Cargando…

Is selenoprotein K required for Borrelia burgdorferi infection within the tick vector Ixodes scapularis?

BACKGROUND: Tick selenoproteins are involved in regulating oxidative and endoplasmic reticulum stress during prolonged tick feeding on mammalian hosts. How selenoproteins are activated upon tick-borne pathogen infection is yet to be defined. METHODS: To examine the functional role of selenoprotein K...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Deepak, Embers, Monica, Mather, Thomas N., Karim, Shahid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555942/
https://www.ncbi.nlm.nih.gov/pubmed/31174589
http://dx.doi.org/10.1186/s13071-019-3548-y
Descripción
Sumario:BACKGROUND: Tick selenoproteins are involved in regulating oxidative and endoplasmic reticulum stress during prolonged tick feeding on mammalian hosts. How selenoproteins are activated upon tick-borne pathogen infection is yet to be defined. METHODS: To examine the functional role of selenoprotein K in Borrelia burgdorferi infection within the tick host Ixodes scapularis, RNA interference (RNAi)-based gene silencing was performed. RESULTS: Selenoprotein K is an endoplasmic reticulum (ER)-resident protein and a component of the ERAD complex involved in ER homeostasis. A qRT-PCR assay revealed the significant upregulation of selenogene K (selenoK) expression in B. burgdorferi-infected tick tissues. Silencing of the selenoK transcript significantly depleted B. burgdorferi copies within the infected tick tissues. Upon selenoK knockdown, another component of the ERAD complex, selenoprotein S (selenoS), was significantly upregulated, suggesting a compensatory mechanism to maintain ER homeostasis within the tick tissues. Knockdown of selenoK also upregulated ER stress-related unfolded protein response (UPR) pathway components, ATF6 and EIF2. CONCLUSIONS: The exact mechanisms that contribute to depletion of B. burgdorferi upon selenoK knockdown is yet to be determined, but this study suggests that selenoK may play a vital role in the survival of B. burgdorferi within the tick host. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13071-019-3548-y) contains supplementary material, which is available to authorized users.