Cargando…
NanoARG: a web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes
BACKGROUND: Direct and indirect selection pressures imposed by antibiotics and co-selective agents and horizontal gene transfer are fundamental drivers of the evolution and spread of antibiotic resistance. Therefore, effective environmental monitoring tools should ideally capture not only antibiotic...
Autores principales: | Arango-Argoty, G. A., Dai, D., Pruden, A., Vikesland, P., Heath, L. S., Zhang, L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6555988/ https://www.ncbi.nlm.nih.gov/pubmed/31174603 http://dx.doi.org/10.1186/s40168-019-0703-9 |
Ejemplares similares
-
DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data
por: Arango-Argoty, Gustavo, et al.
Publicado: (2018) -
Identification of discriminatory antibiotic resistance genes among environmental resistomes using extremely randomized tree algorithm
por: Gupta, Suraj, et al.
Publicado: (2019) -
Critical evaluation of short, long, and hybrid assembly for contextual analysis of antibiotic resistance genes in complex environmental metagenomes
por: Brown, Connor L., et al.
Publicado: (2021) -
MetaStorm: A Public Resource for Customizable Metagenomics Annotation
por: Arango-Argoty, Gustavo, et al.
Publicado: (2016) -
AgroSeek: a system for computational analysis of environmental metagenomic data and associated metadata
por: Liang, Xiao, et al.
Publicado: (2021)