Cargando…
An Ad Hoc Random Initialization Deep Neural Network Architecture for Discriminating Malignant Breast Cancer Lesions in Mammographic Images
Breast cancer is one of the most common cancers in women, with more than 1,300,000 cases and 450,000 deaths each year worldwide. In this context, recent studies showed that early breast cancer detection, along with suitable treatment, could significantly reduce breast cancer death rates in the long...
Autores principales: | Duggento, Andrea, Aiello, Marco, Cavaliere, Carlo, Cascella, Giuseppe L., Cascella, Davide, Conte, Giovanni, Guerrisi, Maria, Toschi, Nicola |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556299/ https://www.ncbi.nlm.nih.gov/pubmed/31249497 http://dx.doi.org/10.1155/2019/5982834 |
Ejemplares similares
-
Multivariate Granger causality unveils directed parietal to prefrontal cortex connectivity during task-free MRI
por: Duggento, Andrea, et al.
Publicado: (2018) -
Variability and Reproducibility of Directed and Undirected Functional MRI Connectomes in the Human Brain
por: Conti, Allegra, et al.
Publicado: (2019) -
MWAHCA: A Multimedia Wireless Ad Hoc Cluster Architecture
por: Diaz, Juan R., et al.
Publicado: (2014) -
A Statistical Approach to Assess the Robustness of Radiomics Features in the Discrimination of Mammographic Lesions
por: Ponsiglione, Alfonso Maria, et al.
Publicado: (2023) -
A Parsimonious Granger Causality Formulation for Capturing Arbitrarily Long Multivariate Associations
por: Duggento, Andrea, et al.
Publicado: (2019)