Cargando…
Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms
Diffusion MRI is being used increasingly in studies of the brain and other parts of the body for its ability to provide quantitative measures that are sensitive to changes in tissue microstructure. However, inter-scanner and inter-protocol differences are known to induce significant measurement vari...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556555/ https://www.ncbi.nlm.nih.gov/pubmed/30716459 http://dx.doi.org/10.1016/j.neuroimage.2019.01.077 |
_version_ | 1783425349350064128 |
---|---|
author | Tax, Chantal MW. Grussu, Francesco Kaden, Enrico Ning, Lipeng Rudrapatna, Umesh John Evans, C. St-Jean, Samuel Leemans, Alexander Koppers, Simon Merhof, Dorit Ghosh, Aurobrata Tanno, Ryutaro Alexander, Daniel C. Zappalà, Stefano Charron, Cyril Kusmia, Slawomir Linden, David EJ. Jones, Derek K. Veraart, Jelle |
author_facet | Tax, Chantal MW. Grussu, Francesco Kaden, Enrico Ning, Lipeng Rudrapatna, Umesh John Evans, C. St-Jean, Samuel Leemans, Alexander Koppers, Simon Merhof, Dorit Ghosh, Aurobrata Tanno, Ryutaro Alexander, Daniel C. Zappalà, Stefano Charron, Cyril Kusmia, Slawomir Linden, David EJ. Jones, Derek K. Veraart, Jelle |
author_sort | Tax, Chantal MW. |
collection | PubMed |
description | Diffusion MRI is being used increasingly in studies of the brain and other parts of the body for its ability to provide quantitative measures that are sensitive to changes in tissue microstructure. However, inter-scanner and inter-protocol differences are known to induce significant measurement variability, which in turn jeopardises the ability to obtain ‘truly quantitative measures’ and challenges the reliable combination of different datasets. Combining datasets from different scanners and/or acquired at different time points could dramatically increase the statistical power of clinical studies, and facilitate multi-centre research. Even though careful harmonisation of acquisition parameters can reduce variability, inter-protocol differences become almost inevitable with improvements in hardware and sequence design over time, even within a site. In this work, we present a benchmark diffusion MRI database of the same subjects acquired on three distinct scanners with different maximum gradient strength (40, 80, and 300 mT/m), and with ‘standard’ and ‘state-of-the-art’ protocols, where the latter have higher spatial and angular resolution. The dataset serves as a useful testbed for method development in cross-scanner/cross-protocol diffusion MRI harmonisation and quality enhancement. Using the database, we compare the performance of five different methods for estimating mappings between the scanners and protocols. The results show that cross-scanner harmonisation of single-shell diffusion data sets can reduce the variability between scanners, and highlight the promises and shortcomings of today's data harmonisation techniques. |
format | Online Article Text |
id | pubmed-6556555 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-65565552019-07-15 Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms Tax, Chantal MW. Grussu, Francesco Kaden, Enrico Ning, Lipeng Rudrapatna, Umesh John Evans, C. St-Jean, Samuel Leemans, Alexander Koppers, Simon Merhof, Dorit Ghosh, Aurobrata Tanno, Ryutaro Alexander, Daniel C. Zappalà, Stefano Charron, Cyril Kusmia, Slawomir Linden, David EJ. Jones, Derek K. Veraart, Jelle Neuroimage Article Diffusion MRI is being used increasingly in studies of the brain and other parts of the body for its ability to provide quantitative measures that are sensitive to changes in tissue microstructure. However, inter-scanner and inter-protocol differences are known to induce significant measurement variability, which in turn jeopardises the ability to obtain ‘truly quantitative measures’ and challenges the reliable combination of different datasets. Combining datasets from different scanners and/or acquired at different time points could dramatically increase the statistical power of clinical studies, and facilitate multi-centre research. Even though careful harmonisation of acquisition parameters can reduce variability, inter-protocol differences become almost inevitable with improvements in hardware and sequence design over time, even within a site. In this work, we present a benchmark diffusion MRI database of the same subjects acquired on three distinct scanners with different maximum gradient strength (40, 80, and 300 mT/m), and with ‘standard’ and ‘state-of-the-art’ protocols, where the latter have higher spatial and angular resolution. The dataset serves as a useful testbed for method development in cross-scanner/cross-protocol diffusion MRI harmonisation and quality enhancement. Using the database, we compare the performance of five different methods for estimating mappings between the scanners and protocols. The results show that cross-scanner harmonisation of single-shell diffusion data sets can reduce the variability between scanners, and highlight the promises and shortcomings of today's data harmonisation techniques. Academic Press 2019-07-15 /pmc/articles/PMC6556555/ /pubmed/30716459 http://dx.doi.org/10.1016/j.neuroimage.2019.01.077 Text en © 2019 The Authors. Published by Elsevier Inc. http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tax, Chantal MW. Grussu, Francesco Kaden, Enrico Ning, Lipeng Rudrapatna, Umesh John Evans, C. St-Jean, Samuel Leemans, Alexander Koppers, Simon Merhof, Dorit Ghosh, Aurobrata Tanno, Ryutaro Alexander, Daniel C. Zappalà, Stefano Charron, Cyril Kusmia, Slawomir Linden, David EJ. Jones, Derek K. Veraart, Jelle Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms |
title | Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms |
title_full | Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms |
title_fullStr | Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms |
title_full_unstemmed | Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms |
title_short | Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms |
title_sort | cross-scanner and cross-protocol diffusion mri data harmonisation: a benchmark database and evaluation of algorithms |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556555/ https://www.ncbi.nlm.nih.gov/pubmed/30716459 http://dx.doi.org/10.1016/j.neuroimage.2019.01.077 |
work_keys_str_mv | AT taxchantalmw crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT grussufrancesco crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT kadenenrico crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT ninglipeng crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT rudrapatnaumesh crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT johnevansc crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT stjeansamuel crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT leemansalexander crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT kopperssimon crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT merhofdorit crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT ghoshaurobrata crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT tannoryutaro crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT alexanderdanielc crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT zappalastefano crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT charroncyril crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT kusmiaslawomir crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT lindendavidej crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT jonesderekk crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms AT veraartjelle crossscannerandcrossprotocoldiffusionmridataharmonisationabenchmarkdatabaseandevaluationofalgorithms |