Cargando…
A predictive model of overall survival in patients with metastatic castration-resistant prostate cancer
Metastatic castration resistant prostate cancer (mCRPC) is one of the most common cancers with a poor prognosis. To improve prognostic models of mCRPC, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) Consortium organized a crowdsourced competition known as the Prostate Cancer DR...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556990/ https://www.ncbi.nlm.nih.gov/pubmed/31231503 http://dx.doi.org/10.12688/f1000research.8192.2 |
_version_ | 1783425401893158912 |
---|---|
author | Mahmoudian, Mehrad Seyednasrollah, Fatemeh Koivu, Liisa Hirvonen, Outi Jyrkkiö, Sirkku Elo, Laura L. |
author_facet | Mahmoudian, Mehrad Seyednasrollah, Fatemeh Koivu, Liisa Hirvonen, Outi Jyrkkiö, Sirkku Elo, Laura L. |
author_sort | Mahmoudian, Mehrad |
collection | PubMed |
description | Metastatic castration resistant prostate cancer (mCRPC) is one of the most common cancers with a poor prognosis. To improve prognostic models of mCRPC, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) Consortium organized a crowdsourced competition known as the Prostate Cancer DREAM Challenge. In the competition, data from four phase III clinical trials were utilized. A total of 1600 patients’ clinical information across three of the trials was used to generate prognostic models, whereas one of the datasets (313 patients) was held out for blinded validation. The previously introduced prognostic model of overall survival of chemotherapy-naive mCRPC patients treated with docetaxel or prednisone (so called Halabi model) was used as a performance baseline. This paper presents the model developed by the team TYTDreamChallenge and its improved version to predict the prognosis of mCRPC patients within the first 30 months after starting the treatment based on available clinical features of each patient. In particular, by replacing our original larger set of eleven features with a smaller more carefully selected set of only five features the prediction performance on the independent validation cohort increased up to 5.4 percent. While the original TYTDreamChallenge model (iAUC=0.748) performed similarly as the performance-baseline model developed by Halabi et al. (iAUC=0.743), the improved post-challenge model (iAUC=0.779) showed markedly improved performance by using only PSA, ALP, AST, HB, and LESIONS as features. This highlights the importance of the selection of the clinical features when developing the predictive models. |
format | Online Article Text |
id | pubmed-6556990 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | F1000 Research Limited |
record_format | MEDLINE/PubMed |
spelling | pubmed-65569902019-06-20 A predictive model of overall survival in patients with metastatic castration-resistant prostate cancer Mahmoudian, Mehrad Seyednasrollah, Fatemeh Koivu, Liisa Hirvonen, Outi Jyrkkiö, Sirkku Elo, Laura L. F1000Res Method Article Metastatic castration resistant prostate cancer (mCRPC) is one of the most common cancers with a poor prognosis. To improve prognostic models of mCRPC, the Dialogue for Reverse Engineering Assessments and Methods (DREAM) Consortium organized a crowdsourced competition known as the Prostate Cancer DREAM Challenge. In the competition, data from four phase III clinical trials were utilized. A total of 1600 patients’ clinical information across three of the trials was used to generate prognostic models, whereas one of the datasets (313 patients) was held out for blinded validation. The previously introduced prognostic model of overall survival of chemotherapy-naive mCRPC patients treated with docetaxel or prednisone (so called Halabi model) was used as a performance baseline. This paper presents the model developed by the team TYTDreamChallenge and its improved version to predict the prognosis of mCRPC patients within the first 30 months after starting the treatment based on available clinical features of each patient. In particular, by replacing our original larger set of eleven features with a smaller more carefully selected set of only five features the prediction performance on the independent validation cohort increased up to 5.4 percent. While the original TYTDreamChallenge model (iAUC=0.748) performed similarly as the performance-baseline model developed by Halabi et al. (iAUC=0.743), the improved post-challenge model (iAUC=0.779) showed markedly improved performance by using only PSA, ALP, AST, HB, and LESIONS as features. This highlights the importance of the selection of the clinical features when developing the predictive models. F1000 Research Limited 2019-05-17 /pmc/articles/PMC6556990/ /pubmed/31231503 http://dx.doi.org/10.12688/f1000research.8192.2 Text en Copyright: © 2019 Mahmoudian M et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Method Article Mahmoudian, Mehrad Seyednasrollah, Fatemeh Koivu, Liisa Hirvonen, Outi Jyrkkiö, Sirkku Elo, Laura L. A predictive model of overall survival in patients with metastatic castration-resistant prostate cancer |
title | A predictive model of overall survival in patients with metastatic castration-resistant prostate cancer |
title_full | A predictive model of overall survival in patients with metastatic castration-resistant prostate cancer |
title_fullStr | A predictive model of overall survival in patients with metastatic castration-resistant prostate cancer |
title_full_unstemmed | A predictive model of overall survival in patients with metastatic castration-resistant prostate cancer |
title_short | A predictive model of overall survival in patients with metastatic castration-resistant prostate cancer |
title_sort | predictive model of overall survival in patients with metastatic castration-resistant prostate cancer |
topic | Method Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6556990/ https://www.ncbi.nlm.nih.gov/pubmed/31231503 http://dx.doi.org/10.12688/f1000research.8192.2 |
work_keys_str_mv | AT mahmoudianmehrad apredictivemodelofoverallsurvivalinpatientswithmetastaticcastrationresistantprostatecancer AT seyednasrollahfatemeh apredictivemodelofoverallsurvivalinpatientswithmetastaticcastrationresistantprostatecancer AT koivuliisa apredictivemodelofoverallsurvivalinpatientswithmetastaticcastrationresistantprostatecancer AT hirvonenouti apredictivemodelofoverallsurvivalinpatientswithmetastaticcastrationresistantprostatecancer AT jyrkkiosirkku apredictivemodelofoverallsurvivalinpatientswithmetastaticcastrationresistantprostatecancer AT elolaural apredictivemodelofoverallsurvivalinpatientswithmetastaticcastrationresistantprostatecancer AT mahmoudianmehrad predictivemodelofoverallsurvivalinpatientswithmetastaticcastrationresistantprostatecancer AT seyednasrollahfatemeh predictivemodelofoverallsurvivalinpatientswithmetastaticcastrationresistantprostatecancer AT koivuliisa predictivemodelofoverallsurvivalinpatientswithmetastaticcastrationresistantprostatecancer AT hirvonenouti predictivemodelofoverallsurvivalinpatientswithmetastaticcastrationresistantprostatecancer AT jyrkkiosirkku predictivemodelofoverallsurvivalinpatientswithmetastaticcastrationresistantprostatecancer AT elolaural predictivemodelofoverallsurvivalinpatientswithmetastaticcastrationresistantprostatecancer |