Cargando…

Sodium butyrate prevents radiation-induced cognitive impairment by restoring pCREB/BDNF expression

Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages. To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in animal models and the effect of sodium butyrate on radiation exposure-induced cognitiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Hae June, Son, Yeonghoon, Lee, Minyoung, Moon, Changjong, Kim, Sung Ho, Shin, In Sik, Yang, Miyoung, Bae, Sangwoo, Kim, Joong Sun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer - Medknow 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557090/
https://www.ncbi.nlm.nih.gov/pubmed/31089051
http://dx.doi.org/10.4103/1673-5374.255974
Descripción
Sumario:Sodium butyrate is a histone deacetylase inhibitor that affects various types of brain damages. To investigate the effects of sodium butyrate on hippocampal dysfunction that occurs after whole-brain irradiation in animal models and the effect of sodium butyrate on radiation exposure-induced cognitive impairments, adult C57BL/6 mice were intraperitoneally treated with 0.6 g/kg sodium butyrate before exposure to 10 Gy cranial irradiation. Cognitive impairment in adult C57BL/6 mice was evaluated via an object recognition test 30 days after irradiation. We also detected the expression levels of neurogenic cell markers (doublecortin) and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor. Radiation-exposed mice had decreased cognitive function and hippocampal doublecortin and phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression. Sodium butyrate pretreatment reversed these changes. These findings suggest that sodium butyrate can improve radiation-induced cognitive dysfunction through inhibiting the decrease in hippocampal phosphorylated cAMP response element binding protein/brain-derived neurotrophic factor expression. The study procedures were approved by the Institutional Animal Care and Use Committee of Korea Institute of Radiological Medical Sciences (approval No. KIRAMS16-0002) on December 30, 2016.