Cargando…
Model-independent recovery of interfacial structure from multi-contrast neutron reflectivity data
Neutron specular reflectivity at soft interfaces provides sub-nanometre information concerning the molecular distribution of thin films, while the application of contrast variation can highlight the scattering from different parts of the system and lead to an overall reduction in fitting ambiguity....
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557181/ https://www.ncbi.nlm.nih.gov/pubmed/31236091 http://dx.doi.org/10.1107/S1600576719003534 |
_version_ | 1783425432058593280 |
---|---|
author | Koutsioubas, Alexandros |
author_facet | Koutsioubas, Alexandros |
author_sort | Koutsioubas, Alexandros |
collection | PubMed |
description | Neutron specular reflectivity at soft interfaces provides sub-nanometre information concerning the molecular distribution of thin films, while the application of contrast variation can highlight the scattering from different parts of the system and lead to an overall reduction in fitting ambiguity. Traditional modelling approaches involve the construction of a trial scattering length density profile based on initial speculation and the subsequent refinement of its parameters through minimization of the discrepancy between the calculated and measured reflectivity. In practice this might produce an artificial bias towards specific sets of solutions. On the other hand, direct inversion of reflectivity data, despite its ability to provide a unique solution, is subject to limitations and experimental complications. Presented here is an integrated indirect Fourier transform/simulated annealing method that, when applied to multiple solvent contrast reflectivity data and within the limits of finite spatial resolution, leads to reliable reconstructions of the interfacial structure without the need for any a priori assumptions. The generality of the method permits its straightforward application in common experimental contrast-variation investigations at the solid/liquid and air/liquid interface. |
format | Online Article Text |
id | pubmed-6557181 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-65571812019-06-24 Model-independent recovery of interfacial structure from multi-contrast neutron reflectivity data Koutsioubas, Alexandros J Appl Crystallogr Research Papers Neutron specular reflectivity at soft interfaces provides sub-nanometre information concerning the molecular distribution of thin films, while the application of contrast variation can highlight the scattering from different parts of the system and lead to an overall reduction in fitting ambiguity. Traditional modelling approaches involve the construction of a trial scattering length density profile based on initial speculation and the subsequent refinement of its parameters through minimization of the discrepancy between the calculated and measured reflectivity. In practice this might produce an artificial bias towards specific sets of solutions. On the other hand, direct inversion of reflectivity data, despite its ability to provide a unique solution, is subject to limitations and experimental complications. Presented here is an integrated indirect Fourier transform/simulated annealing method that, when applied to multiple solvent contrast reflectivity data and within the limits of finite spatial resolution, leads to reliable reconstructions of the interfacial structure without the need for any a priori assumptions. The generality of the method permits its straightforward application in common experimental contrast-variation investigations at the solid/liquid and air/liquid interface. International Union of Crystallography 2019-04-30 /pmc/articles/PMC6557181/ /pubmed/31236091 http://dx.doi.org/10.1107/S1600576719003534 Text en © Alexandros Koutsioubas 2019 http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Research Papers Koutsioubas, Alexandros Model-independent recovery of interfacial structure from multi-contrast neutron reflectivity data |
title | Model-independent recovery of interfacial structure from multi-contrast neutron reflectivity data |
title_full | Model-independent recovery of interfacial structure from multi-contrast neutron reflectivity data |
title_fullStr | Model-independent recovery of interfacial structure from multi-contrast neutron reflectivity data |
title_full_unstemmed | Model-independent recovery of interfacial structure from multi-contrast neutron reflectivity data |
title_short | Model-independent recovery of interfacial structure from multi-contrast neutron reflectivity data |
title_sort | model-independent recovery of interfacial structure from multi-contrast neutron reflectivity data |
topic | Research Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557181/ https://www.ncbi.nlm.nih.gov/pubmed/31236091 http://dx.doi.org/10.1107/S1600576719003534 |
work_keys_str_mv | AT koutsioubasalexandros modelindependentrecoveryofinterfacialstructurefrommulticontrastneutronreflectivitydata |