Cargando…

Indoleamine-pyrrole 2,3-dioxygenase-1 (IDO-1) mRNA is over-expressed in the duodenal mucosa and is negatively correlated with serum tryptophan concentrations in dogs with protein-losing enteropathy

INTRODUCTION: Dogs with protein-losing enteropathy (PLE) have decreased serum tryptophan concentrations, which may contribute to disease pathogenesis. Indoleamine-pyrrole 2,3-dioxygenase-1 (IDO-1) expression is associated with low serum tryptophan concentrations and is increased in the gastrointesti...

Descripción completa

Detalles Bibliográficos
Autores principales: Kathrani, Aarti, Lezcano, Victor, Hall, Edward J., Jergens, Albert E., Seo, Yeon-Jung, Mochel, Jonathan P., Atherly, Todd, Allenspach, Karin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557522/
https://www.ncbi.nlm.nih.gov/pubmed/31181125
http://dx.doi.org/10.1371/journal.pone.0218218
Descripción
Sumario:INTRODUCTION: Dogs with protein-losing enteropathy (PLE) have decreased serum tryptophan concentrations, which may contribute to disease pathogenesis. Indoleamine-pyrrole 2,3-dioxygenase-1 (IDO-1) expression is associated with low serum tryptophan concentrations and is increased in the gastrointestinal tract of humans with inflammatory bowel disease (IBD). Therefore, the objective of our study was to determine if the mRNA expression of IDO-1 is increased in the duodenal mucosa of dogs with PLE as compared to dogs with chronic enteropathy (CE) and healthy dogs, and whether this expression is correlated with changes in serum tryptophan concentration. METHODS: Our study was a retrospective study using archived paraffin-embedded duodenal biopsy specimens from 8 healthy Beagle dogs from the Iowa State University Canine Service Colony and 18 and 6 client-owned dogs diagnosed with CE and PLE, respectively at the Bristol Veterinary School. A novel RNA in situ hybridization (ISH) technology, RNAscope, was used to identify IDO-1 mRNA mucosal expression in duodenal tissues. An IDO-1 specific probe was hybridized onto 10 duodenal biopsy sections from each dog whereby RNAscope signal (mRNA expression) was quantified by a single operator using light microscopy. RESULTS: Dogs with PLE had significantly higher mRNA expression of IDO-1 in the duodenal mucosa compared to healthy dogs (mucosal percentage IDO-1 positive: P = 0.0093, (mean ± S.D) control: 19.36 ± 7.08, PLE: 34.12 ± 5.98, average fold difference: 1.76 and mucosal IDO-1 H-score: P = 0.0356, (mean ± S.D) control: 45.26 ± 19.33, PLE: 84.37 ± 19.86, average fold difference: 1.86). The duodenal mucosal mRNA expression of IDO-1 was negatively correlated with serum tryptophan concentrations in dogs with PLE (mucosal IDO-1 H-score: Spearman’s rank correlation coefficient = -0.94, P = 0.0048). CONCLUSIONS: In conclusion, our study suggests that decreased serum tryptophan concentrations in dogs with PLE is associated with increased intestinal IDO-1 expression. Further studies are needed to determine potential inflammatory pathways responsible for increased expression of IDO-1 in the intestinal tract of dogs with PLE.