Cargando…

Scoring amino acid mutation to predict pandemic risk of avian influenza virus

BACKGROUND: Avian influenza virus can directly cross species barriers and infect humans with high fatality. As antigen novelty for human host, the public health is being challenged seriously. The pandemic risk of avian influenza viruses should be analyzed and a prediction model should be constructed...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiang, Xiaoli, Kou, Zheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557742/
https://www.ncbi.nlm.nih.gov/pubmed/31182019
http://dx.doi.org/10.1186/s12859-019-2770-0
Descripción
Sumario:BACKGROUND: Avian influenza virus can directly cross species barriers and infect humans with high fatality. As antigen novelty for human host, the public health is being challenged seriously. The pandemic risk of avian influenza viruses should be analyzed and a prediction model should be constructed for virology applications. RESULTS: The 178 signature positions in 11 viral proteins were firstly screened as features by the scores of five amino acid factors and their random forest rankings. The Supporting Vector Machine algorithm achieved well performance. The most important amino acid factor (Factor 5) and the minimal range of signature positions (63 amino acid residues) were also explored. Moreover, human-origin avian influenza viruses with three or four genome segments from human virus had pandemic risk with high probability. CONCLUSION: Using machine learning methods, the present paper scores the amino acid mutations and predicts pandemic risk with well performance. Although long evolution distances between avian and human viruses suggest that avian influenza virus in nature still need time to fix among human host, it should be notable that there are high pandemic risks for H7N9 and H9N2 avian viruses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12859-019-2770-0) contains supplementary material, which is available to authorized users.