Cargando…
L(2,1)-GRMF: an improved graph regularized matrix factorization method to predict drug-target interactions
BACKGROUND: Predicting drug-target interactions is time-consuming and expensive. It is important to present the accuracy of the calculation method. There are many algorithms to predict global interactions, some of which use drug-target networks for prediction (ie, a bipartite graph of bound drug pai...
Autores principales: | Cui, Zhen, Gao, Ying-Lian, Liu, Jin-Xing, Dai, Ling-Yun, Yuan, Sha-Sha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557743/ https://www.ncbi.nlm.nih.gov/pubmed/31182006 http://dx.doi.org/10.1186/s12859-019-2768-7 |
Ejemplares similares
-
Graph regularized L(2,1)-nonnegative matrix factorization for miRNA-disease association prediction
por: Gao, Zhen, et al.
Publicado: (2020) -
Identifying drug-pathway association pairs based on L(2,1)-integrative penalized matrix decomposition
por: Liu, Jin-Xing, et al.
Publicado: (2017) -
The computational prediction of drug-disease interactions using the dual-network L(2,1)-CMF method
por: Cui, Zhen, et al.
Publicado: (2019) -
Joint Lp-Norm and L(2,1)-Norm Constrained Graph Laplacian PCA for Robust Tumor Sample Clustering and Gene Network Module Discovery
por: Kong, Xiang-Zhen, et al.
Publicado: (2021) -
Drug-Target Interaction Prediction via Dual Laplacian Graph Regularized Matrix Completion
por: Wang, Minhui, et al.
Publicado: (2018)