Cargando…

Protease-Activated Receptors 2-Antagonist Suppresses Asthma by Inhibiting Reactive Oxygen Species-Thymic Stromal Lymphopoietin Inflammation and Epithelial Tight Junction Degradation

PURPOSE: Protease-activated receptor 2 (PAR2) reportedly triggers the immune response in allergic asthma. We aimed to investigate the mechanism on allergic inflammation mediated by PAR2. METHODS: Human lung epithelial cells (A549 cells) were used for in vitro, and the German cockroach extract (GCE)-...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Ha-Jung, Lee, Seung-Hwa, Jeong, Sekyoo, Hong, Soo-Jong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Academy of Asthma, Allergy and Clinical Immunology; The Korean Academy of Pediatric Allergy and Respiratory Disease 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557777/
https://www.ncbi.nlm.nih.gov/pubmed/31172724
http://dx.doi.org/10.4168/aair.2019.11.4.560
Descripción
Sumario:PURPOSE: Protease-activated receptor 2 (PAR2) reportedly triggers the immune response in allergic asthma. We aimed to investigate the mechanism on allergic inflammation mediated by PAR2. METHODS: Human lung epithelial cells (A549 cells) were used for in vitro, and the German cockroach extract (GCE)-induced mouse model was developed for in vivo studies. RESULTS: In A549 cells, the levels of reactive oxygen species (ROS) and thymic stromal lymphopoietin (TSLP) were significantly increased by GCE treatment, but were suppressed by PAR2-antagonist (PAR2-ant) or N-acetylcysteine (NAC) treatment. Claudin-1 was degraded by GCE, and was restored by PAR2-ant or NAC in the cells. In the mouse model, the clinical appearance including bronchial hyperresponsiveness, bronchoalveolar lavage fluid analysis and total immunoglobulin E were significantly suppressed by PAR2-ant or NAC. Moreover, TSLP levels in the lung were suppressed by the same treatments in the lung. Claudin-1 was also degraded by GCE, and was restored by PAR2-ant or NAC. CONCLUSIONS: ROS generation and epidermal tight junction degradation are triggered by protease, followed by the induction of TSLP in allergic asthma. Our findings could suggest that PAR2-ant or anti-oxidants could be considered for allergic diseases as preventive alternatives.