Cargando…

Analysis of the geometric phase for a nanowire-bridged superconducting Fabry-Perot resonator

The geometric phases of a nanowire-bridged superconducting Fabry-Perot resonator subjected to a microwave transmission have been investigated through its modelling into a RLC-circuit. Because the Hamiltonian of the system is a somewhat complicated form, special mathematical techniques, such as the i...

Descripción completa

Detalles Bibliográficos
Autores principales: Choi, Jeong Ryeol, Ju, Sanghyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557848/
https://www.ncbi.nlm.nih.gov/pubmed/31182767
http://dx.doi.org/10.1038/s41598-019-44754-7
Descripción
Sumario:The geometric phases of a nanowire-bridged superconducting Fabry-Perot resonator subjected to a microwave transmission have been investigated through its modelling into a RLC-circuit. Because the Hamiltonian of the system is a somewhat complicated form, special mathematical techniques, such as the invariant operator method and the unitary transformation approach, have been adopted in order to treat the system; These methods are very useful for managing complicated time-dependent Hamiltonian systems. We have rigorously evaluated the analytical geometric phases in both the Fock and coherent states. Typically, the geometric phases oscillate and the amplitude of such oscillations tend to grow over time. The influence of parameters of the system on the geometric phases has been analyzed in detail through the relevant illustrations. From our research, the concept of geometric phases and associated quantum mechanical characters of the system has been clarified. Our investigation for the geometric phases is useful for understanding topological features of the system, that take place through the evolution of the wave functions.