Cargando…
Hidden three-state survival model for bivariate longitudinal count data
A model is presented that describes bivariate longitudinal count data by conditioning on a progressive illness-death process where the two living states are latent. The illness-death process is modelled in continuous time, and the count data are described by a bivariate extension of the binomial dis...
Autores principales: | van den Hout, Ardo, Muniz-Terrera, Graciela |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557880/ https://www.ncbi.nlm.nih.gov/pubmed/30151802 http://dx.doi.org/10.1007/s10985-018-9448-1 |
Ejemplares similares
-
Bivariate joint models for survival and change of cognitive
function
por: Pan, Shengning, et al.
Publicado: (2022) -
Change point models for cognitive tests using semi-parametric maximum likelihood
por: van den Hout, Ardo, et al.
Publicado: (2013) -
Models for association in bivariate survival data.
por: Fujii, Y
Publicado: (1990) -
Monitoring parameter change for bivariate time series models of counts
por: Lee, Sangyeol, et al.
Publicado: (2023) -
Handling underlying discrete variables with bivariate mixed hidden Markov models in NONMEM
por: Brekkan, A., et al.
Publicado: (2019)