Cargando…
Microbial community structure of soils in Bamenwan mangrove wetland
Microbial community diversity and composition are important for the maintenance of mangrove ecosystem. Bacterial and archaeal community composition of the Bamenwan Mangrove Wetland soil in Hainan, China, was determined using pyrosequencing technique. Bacterial community composition presented differe...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557889/ https://www.ncbi.nlm.nih.gov/pubmed/31182804 http://dx.doi.org/10.1038/s41598-019-44788-x |
Sumario: | Microbial community diversity and composition are important for the maintenance of mangrove ecosystem. Bacterial and archaeal community composition of the Bamenwan Mangrove Wetland soil in Hainan, China, was determined using pyrosequencing technique. Bacterial community composition presented differences among the five soil samples. Rhizobiales with higher abundance were observed in inner mangrove forest samples, while Desulfobacterales were in the seaward edge samples, and Frankiales, Gaiellales and Rhodospirillales in the landedge sample. For archaea, Crenarchaeota and Euryarchaeota dominated in five samples, but the proportion in each samples were different. Dominant archaeal community composition at the order level was similar in the seaward edge samples. The dominant archaeal clusters in the two inner mangrove forest samples were different, with Soil Crenarchaeotic Group (SCG) and Halobacteriales in sample inside of Bruguiera sexangula forest and SCG, Methanosarcinales and Marine Benthic Group B (MBGB) in sample inside of Xylocarpus mekongensis forest. The dominant archaeal clusters in land sample were unique, with Terrestrial Group and South African Gold Mine Group 1. The metabolic pathways including metabolism, genetic information processing, environmental information processing, cellular processes, organismal systems and human diseases were all detected for bacterial and archaeal functional profiles, but metabolic potentials among five samples were different. |
---|