Cargando…
Deep learning only by normal brain PET identify unheralded brain anomalies
BACKGROUND: Recent deep learning models have shown remarkable accuracy for the diagnostic classification. However, they have limitations in clinical application due to the gap between the training cohorts and real-world data. We aimed to develop a model trained only by normal brain PET data with an...
Autores principales: | Choi, Hongyoon, Ha, Seunggyun, Kang, Hyejin, Lee, Hyekyoung, Lee, Dong Soo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557913/ https://www.ncbi.nlm.nih.gov/pubmed/31003928 http://dx.doi.org/10.1016/j.ebiom.2019.04.022 |
Ejemplares similares
-
Volume entropy for modeling information flow in a brain graph
por: Lee, Hyekyoung, et al.
Publicado: (2019) -
Characteristic functional cores revealed by hyperbolic disc embedding and k-core percolation on resting-state fMRI
por: Whi, Wonseok, et al.
Publicado: (2022) -
Predicting Aging of Brain Metabolic Topography Using Variational Autoencoder
por: Choi, Hongyoon, et al.
Publicado: (2018) -
Refining diagnosis of Parkinson's disease with deep learning-based interpretation of dopamine transporter imaging
por: Choi, Hongyoon, et al.
Publicado: (2017) -
Hyperbolic disc embedding of functional human brain connectomes using resting-state fMRI
por: Whi, Wonseok, et al.
Publicado: (2022)