Cargando…

Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells

Immune checkpoint blockade (ICB) immunotherapy increases antitumor immunity by blocking cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4) or programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) and displays robust clinical responses in various cancers. However, ICB immunothera...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Tingting, Zheng, Naisheng, Luo, Qin, Jiang, Li, He, Baokun, Yuan, Xiangliang, Shen, Lisong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558076/
https://www.ncbi.nlm.nih.gov/pubmed/31214189
http://dx.doi.org/10.3389/fimmu.2019.01235
_version_ 1783425551389687808
author Wang, Tingting
Zheng, Naisheng
Luo, Qin
Jiang, Li
He, Baokun
Yuan, Xiangliang
Shen, Lisong
author_facet Wang, Tingting
Zheng, Naisheng
Luo, Qin
Jiang, Li
He, Baokun
Yuan, Xiangliang
Shen, Lisong
author_sort Wang, Tingting
collection PubMed
description Immune checkpoint blockade (ICB) immunotherapy increases antitumor immunity by blocking cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4) or programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) and displays robust clinical responses in various cancers. However, ICB immunotherapy also triggers severe inflammatory side effects, known as immune-related adverse effects (irAEs). One of the most common toxicities is immune checkpoint blockade-associated colitis (ICB associated colitis). The exact mechanism of ICB associated colitis remains to be explored. Here, we combined ICB (anti–CTLA-4 and anti-PD-1) treatment with a standard colitis model, in which a more severe form of colitis is induced in mice, to recapitulate the clinical observations in patients receiving combined ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) therapy, during which colitis is the most frequent complication encountered. We found that the composition of the gut microbiota changed in ICB associated colitis. Principal component analysis of the gut microbiome showed an obvious reduction in the abundance of Lactobacillus in severe ICB associated colitis. Lactobacillus depletion completely by vancomycin augmented the immunopathology of ICB. Furthermore, we found that the ICB toxicity could be totally eliminated via the administration of a widely available probiotic Lactobacillus reuteri (L.reuteri). Oral administration of L. reuteri therapeutically inhibited the development and progression of colitis, thus ameliorating the loss of body weight and inflammatory status induced by ICB treatment. Mechanistically, the protective effect of L. reuteri was associated with a decrease in the distribution of group 3 innate lymphocytes (ILC3s) induced by ICB associated colitis. In conclusion, our study highlights the immunomodulatory mechanism of the gut microbiota and suggests that manipulating the gut microbiota by administrating L. reuteri can mitigate the autoimmunity induced by ICB, thus allowing ICB immunotherapy to stimulate the desired immune response without an apparent immunopathology.
format Online
Article
Text
id pubmed-6558076
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-65580762019-06-18 Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells Wang, Tingting Zheng, Naisheng Luo, Qin Jiang, Li He, Baokun Yuan, Xiangliang Shen, Lisong Front Immunol Immunology Immune checkpoint blockade (ICB) immunotherapy increases antitumor immunity by blocking cytotoxic-T-lymphocyte-associated protein 4 (CTLA-4) or programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) and displays robust clinical responses in various cancers. However, ICB immunotherapy also triggers severe inflammatory side effects, known as immune-related adverse effects (irAEs). One of the most common toxicities is immune checkpoint blockade-associated colitis (ICB associated colitis). The exact mechanism of ICB associated colitis remains to be explored. Here, we combined ICB (anti–CTLA-4 and anti-PD-1) treatment with a standard colitis model, in which a more severe form of colitis is induced in mice, to recapitulate the clinical observations in patients receiving combined ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) therapy, during which colitis is the most frequent complication encountered. We found that the composition of the gut microbiota changed in ICB associated colitis. Principal component analysis of the gut microbiome showed an obvious reduction in the abundance of Lactobacillus in severe ICB associated colitis. Lactobacillus depletion completely by vancomycin augmented the immunopathology of ICB. Furthermore, we found that the ICB toxicity could be totally eliminated via the administration of a widely available probiotic Lactobacillus reuteri (L.reuteri). Oral administration of L. reuteri therapeutically inhibited the development and progression of colitis, thus ameliorating the loss of body weight and inflammatory status induced by ICB treatment. Mechanistically, the protective effect of L. reuteri was associated with a decrease in the distribution of group 3 innate lymphocytes (ILC3s) induced by ICB associated colitis. In conclusion, our study highlights the immunomodulatory mechanism of the gut microbiota and suggests that manipulating the gut microbiota by administrating L. reuteri can mitigate the autoimmunity induced by ICB, thus allowing ICB immunotherapy to stimulate the desired immune response without an apparent immunopathology. Frontiers Media S.A. 2019-06-04 /pmc/articles/PMC6558076/ /pubmed/31214189 http://dx.doi.org/10.3389/fimmu.2019.01235 Text en Copyright © 2019 Wang, Zheng, Luo, Jiang, He, Yuan and Shen. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Wang, Tingting
Zheng, Naisheng
Luo, Qin
Jiang, Li
He, Baokun
Yuan, Xiangliang
Shen, Lisong
Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells
title Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells
title_full Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells
title_fullStr Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells
title_full_unstemmed Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells
title_short Probiotics Lactobacillus reuteri Abrogates Immune Checkpoint Blockade-Associated Colitis by Inhibiting Group 3 Innate Lymphoid Cells
title_sort probiotics lactobacillus reuteri abrogates immune checkpoint blockade-associated colitis by inhibiting group 3 innate lymphoid cells
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558076/
https://www.ncbi.nlm.nih.gov/pubmed/31214189
http://dx.doi.org/10.3389/fimmu.2019.01235
work_keys_str_mv AT wangtingting probioticslactobacillusreuteriabrogatesimmunecheckpointblockadeassociatedcolitisbyinhibitinggroup3innatelymphoidcells
AT zhengnaisheng probioticslactobacillusreuteriabrogatesimmunecheckpointblockadeassociatedcolitisbyinhibitinggroup3innatelymphoidcells
AT luoqin probioticslactobacillusreuteriabrogatesimmunecheckpointblockadeassociatedcolitisbyinhibitinggroup3innatelymphoidcells
AT jiangli probioticslactobacillusreuteriabrogatesimmunecheckpointblockadeassociatedcolitisbyinhibitinggroup3innatelymphoidcells
AT hebaokun probioticslactobacillusreuteriabrogatesimmunecheckpointblockadeassociatedcolitisbyinhibitinggroup3innatelymphoidcells
AT yuanxiangliang probioticslactobacillusreuteriabrogatesimmunecheckpointblockadeassociatedcolitisbyinhibitinggroup3innatelymphoidcells
AT shenlisong probioticslactobacillusreuteriabrogatesimmunecheckpointblockadeassociatedcolitisbyinhibitinggroup3innatelymphoidcells