Cargando…
Review of Causal Discovery Methods Based on Graphical Models
A fundamental task in various disciplines of science, including biology, is to find underlying causal relations and make use of them. Causal relations can be seen if interventions are properly applied; however, in many cases they are difficult or even impossible to conduct. It is then necessary to d...
Autores principales: | Glymour, Clark, Zhang, Kun, Spirtes, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558187/ https://www.ncbi.nlm.nih.gov/pubmed/31214249 http://dx.doi.org/10.3389/fgene.2019.00524 |
Ejemplares similares
-
Causal discovery and inference: concepts and recent methodological advances
por: Spirtes, Peter, et al.
Publicado: (2016) -
Causation, prediction, and search
por: Spirtes, Peter, et al.
Publicado: (1993) -
Comparison of strategies for scalable causal discovery of latent variable models from mixed data
por: Raghu, Vineet K., et al.
Publicado: (2018) -
Bivariate Causal Discovery and Its Applications to Gene Expression and Imaging Data Analysis
por: Jiao, Rong, et al.
Publicado: (2018) -
Graphical analysis for phenome-wide causal discovery in genotyped population-scale biobanks
por: Amar, David, et al.
Publicado: (2021)