Cargando…

Estimation of structural and mechanical properties of Cadmium Sulfide/PVA nanocomposite films

Cadmium Sulfide (CdS) nanoparticles have been synthesized by hydrothermal method, and dispersed in varying amounts by weight, in Poly Vinyl Alcohol (PVA) matrix. Subsequently, PVA/CdS nanocomposite films have been characterized and analyzed to estimate CdS nanoparticles effect on the properties of P...

Descripción completa

Detalles Bibliográficos
Autores principales: Koteswararao, Jammula, Satyanarayana, Suggala Venkata, Madhu, Gattumane Motappa, Venkatesham, Vuppala
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558304/
https://www.ncbi.nlm.nih.gov/pubmed/31206090
http://dx.doi.org/10.1016/j.heliyon.2019.e01851
Descripción
Sumario:Cadmium Sulfide (CdS) nanoparticles have been synthesized by hydrothermal method, and dispersed in varying amounts by weight, in Poly Vinyl Alcohol (PVA) matrix. Subsequently, PVA/CdS nanocomposite films have been characterized and analyzed to estimate CdS nanoparticles effect on the properties of PVA films. Both mechanical and structural properties have been considered for the analysis. From the FTIR (Fourier Transform Infrared Spectroscopy) analysis it's found that stretching of C-H, CO, COC and COS were observed at different peaks that may be due to different functional groups. X-ray diffraction (XRD) results showed that the matrix contain pure nano CdS particles. The images obtained by Scanning Electron Microscopy (SEM) showed the presence of varying degree of agglomerated CdS nanoparticles distributed homogeneously in the PVA/CdS nanocomposite. Thermal properties are found using DSC (Differential Scanning Calorimetry) was used to investigate. PVA/CdS samples were tested by Universal Testing Machine (UTM) and the results indicated improvement in mechanical properties when compared with neat PVA film, viz. Young's modulus (from 33.20 to 94.30 MPa), ultimate tensile stress (from 17.03 to 27.60 MPa), toughness (from 2.18 to 17.62 MPa) and flexural strength (from 4.43 to 7.66 Mpa) with increase in the CdS content in the nanocomposite film.