Cargando…

In silico genome-wide identification and comprehensive characterization of the BES1 gene family in soybean

The BES1 transcription factor family play a central role in brassinosteroid signaling pathway that regulates a wide range of plant growth and developmental processes, as well as resistances to various stresses. However, no comprehensive study of the BES1 gene family in soybean has been reported. In...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Qing, Guo, Luqin, Wang, Hong, Zhang, Yu, Fan, Chengming, Shen, Yanting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558309/
https://www.ncbi.nlm.nih.gov/pubmed/31206092
http://dx.doi.org/10.1016/j.heliyon.2019.e01868
_version_ 1783425600885620736
author Li, Qing
Guo, Luqin
Wang, Hong
Zhang, Yu
Fan, Chengming
Shen, Yanting
author_facet Li, Qing
Guo, Luqin
Wang, Hong
Zhang, Yu
Fan, Chengming
Shen, Yanting
author_sort Li, Qing
collection PubMed
description The BES1 transcription factor family play a central role in brassinosteroid signaling pathway that regulates a wide range of plant growth and developmental processes, as well as resistances to various stresses. However, no comprehensive study of the BES1 gene family in soybean has been reported. In this work, 16 GmBES1-like genes were identified in soybean, which could be divided into two clades based on their phylogenetic relationships, gene structures and motif compositions. We then examined their duplication status and evolutionary models. The result showed that most of the GmBES1-like genes have duplicated counterparts generated from the recent Glycine WGD event, and these genes are originated from 6 distinct ancestors before the Gamma WGT event. We further studied the expression profiles of GmBES1-like genes, and found their spatio-temporal and stressed expression patterns varied tremendously. For example, GmBES1-5 and GmBES1-6 were highly expressed in almost every sample, whereas GmBES1-7 and GmBES1-8 were not expressed. Additionally, interaction network analysis revealed the presence of 3 clusters between GmBES1-like genes and other associated genes, implying that they have both the conserved and divergent functions. Lastly, we analyzed the genetic diversity of GmBES1-like genes in 302 resequenced wild, landrace and improved soybean accessions. It showed that most of these genes are well conserved, and they are not changed during domestication and improvement. These results provide insights into the characterization of GmBES1 family and lay the foundation for further functional study of such genes.
format Online
Article
Text
id pubmed-6558309
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-65583092019-06-14 In silico genome-wide identification and comprehensive characterization of the BES1 gene family in soybean Li, Qing Guo, Luqin Wang, Hong Zhang, Yu Fan, Chengming Shen, Yanting Heliyon Article The BES1 transcription factor family play a central role in brassinosteroid signaling pathway that regulates a wide range of plant growth and developmental processes, as well as resistances to various stresses. However, no comprehensive study of the BES1 gene family in soybean has been reported. In this work, 16 GmBES1-like genes were identified in soybean, which could be divided into two clades based on their phylogenetic relationships, gene structures and motif compositions. We then examined their duplication status and evolutionary models. The result showed that most of the GmBES1-like genes have duplicated counterparts generated from the recent Glycine WGD event, and these genes are originated from 6 distinct ancestors before the Gamma WGT event. We further studied the expression profiles of GmBES1-like genes, and found their spatio-temporal and stressed expression patterns varied tremendously. For example, GmBES1-5 and GmBES1-6 were highly expressed in almost every sample, whereas GmBES1-7 and GmBES1-8 were not expressed. Additionally, interaction network analysis revealed the presence of 3 clusters between GmBES1-like genes and other associated genes, implying that they have both the conserved and divergent functions. Lastly, we analyzed the genetic diversity of GmBES1-like genes in 302 resequenced wild, landrace and improved soybean accessions. It showed that most of these genes are well conserved, and they are not changed during domestication and improvement. These results provide insights into the characterization of GmBES1 family and lay the foundation for further functional study of such genes. Elsevier 2019-06-09 /pmc/articles/PMC6558309/ /pubmed/31206092 http://dx.doi.org/10.1016/j.heliyon.2019.e01868 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Li, Qing
Guo, Luqin
Wang, Hong
Zhang, Yu
Fan, Chengming
Shen, Yanting
In silico genome-wide identification and comprehensive characterization of the BES1 gene family in soybean
title In silico genome-wide identification and comprehensive characterization of the BES1 gene family in soybean
title_full In silico genome-wide identification and comprehensive characterization of the BES1 gene family in soybean
title_fullStr In silico genome-wide identification and comprehensive characterization of the BES1 gene family in soybean
title_full_unstemmed In silico genome-wide identification and comprehensive characterization of the BES1 gene family in soybean
title_short In silico genome-wide identification and comprehensive characterization of the BES1 gene family in soybean
title_sort in silico genome-wide identification and comprehensive characterization of the bes1 gene family in soybean
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558309/
https://www.ncbi.nlm.nih.gov/pubmed/31206092
http://dx.doi.org/10.1016/j.heliyon.2019.e01868
work_keys_str_mv AT liqing insilicogenomewideidentificationandcomprehensivecharacterizationofthebes1genefamilyinsoybean
AT guoluqin insilicogenomewideidentificationandcomprehensivecharacterizationofthebes1genefamilyinsoybean
AT wanghong insilicogenomewideidentificationandcomprehensivecharacterizationofthebes1genefamilyinsoybean
AT zhangyu insilicogenomewideidentificationandcomprehensivecharacterizationofthebes1genefamilyinsoybean
AT fanchengming insilicogenomewideidentificationandcomprehensivecharacterizationofthebes1genefamilyinsoybean
AT shenyanting insilicogenomewideidentificationandcomprehensivecharacterizationofthebes1genefamilyinsoybean