Cargando…

Controlling Superstructure–Property Relationships via Critical Casimir Assembly of Quantum Dots

[Image: see text] The assembly of colloidal quantum dots (QDs) into dense superstructures holds great promise for the development of novel optoelectronic devices. Several assembly techniques have been explored; however, achieving direct and precise control over the interparticle potential that contr...

Descripción completa

Detalles Bibliográficos
Autores principales: Marino, Emanuele, Balazs, Daniel M., Crisp, Ryan W., Hermida-Merino, Daniel, Loi, Maria A., Kodger, Thomas E., Schall, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558640/
https://www.ncbi.nlm.nih.gov/pubmed/31205576
http://dx.doi.org/10.1021/acs.jpcc.9b02033
_version_ 1783425669026283520
author Marino, Emanuele
Balazs, Daniel M.
Crisp, Ryan W.
Hermida-Merino, Daniel
Loi, Maria A.
Kodger, Thomas E.
Schall, Peter
author_facet Marino, Emanuele
Balazs, Daniel M.
Crisp, Ryan W.
Hermida-Merino, Daniel
Loi, Maria A.
Kodger, Thomas E.
Schall, Peter
author_sort Marino, Emanuele
collection PubMed
description [Image: see text] The assembly of colloidal quantum dots (QDs) into dense superstructures holds great promise for the development of novel optoelectronic devices. Several assembly techniques have been explored; however, achieving direct and precise control over the interparticle potential that controls the assembly has proven to be challenging. Here, we exploit the application of critical Casimir forces to drive the growth of QDs into superstructures. We show that the exquisite temperature-dependence of the critical Casimir potential offers new opportunities to control the assembly process and morphology of the resulting QD superstructures. The direct assembly control allows us to elucidate the relation between structural, optical, and conductive properties of the critical Casimir-grown QD superstructures. We find that the choice of the temperature setting the interparticle potential plays a central role in maximizing charge percolation across QD thin-films. These results open up new directions for controlling the assembly of nanostructures and their optoelectronic properties.
format Online
Article
Text
id pubmed-6558640
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-65586402019-06-12 Controlling Superstructure–Property Relationships via Critical Casimir Assembly of Quantum Dots Marino, Emanuele Balazs, Daniel M. Crisp, Ryan W. Hermida-Merino, Daniel Loi, Maria A. Kodger, Thomas E. Schall, Peter J Phys Chem C Nanomater Interfaces [Image: see text] The assembly of colloidal quantum dots (QDs) into dense superstructures holds great promise for the development of novel optoelectronic devices. Several assembly techniques have been explored; however, achieving direct and precise control over the interparticle potential that controls the assembly has proven to be challenging. Here, we exploit the application of critical Casimir forces to drive the growth of QDs into superstructures. We show that the exquisite temperature-dependence of the critical Casimir potential offers new opportunities to control the assembly process and morphology of the resulting QD superstructures. The direct assembly control allows us to elucidate the relation between structural, optical, and conductive properties of the critical Casimir-grown QD superstructures. We find that the choice of the temperature setting the interparticle potential plays a central role in maximizing charge percolation across QD thin-films. These results open up new directions for controlling the assembly of nanostructures and their optoelectronic properties. American Chemical Society 2019-05-08 2019-06-06 /pmc/articles/PMC6558640/ /pubmed/31205576 http://dx.doi.org/10.1021/acs.jpcc.9b02033 Text en Copyright © 2019 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Marino, Emanuele
Balazs, Daniel M.
Crisp, Ryan W.
Hermida-Merino, Daniel
Loi, Maria A.
Kodger, Thomas E.
Schall, Peter
Controlling Superstructure–Property Relationships via Critical Casimir Assembly of Quantum Dots
title Controlling Superstructure–Property Relationships via Critical Casimir Assembly of Quantum Dots
title_full Controlling Superstructure–Property Relationships via Critical Casimir Assembly of Quantum Dots
title_fullStr Controlling Superstructure–Property Relationships via Critical Casimir Assembly of Quantum Dots
title_full_unstemmed Controlling Superstructure–Property Relationships via Critical Casimir Assembly of Quantum Dots
title_short Controlling Superstructure–Property Relationships via Critical Casimir Assembly of Quantum Dots
title_sort controlling superstructure–property relationships via critical casimir assembly of quantum dots
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558640/
https://www.ncbi.nlm.nih.gov/pubmed/31205576
http://dx.doi.org/10.1021/acs.jpcc.9b02033
work_keys_str_mv AT marinoemanuele controllingsuperstructurepropertyrelationshipsviacriticalcasimirassemblyofquantumdots
AT balazsdanielm controllingsuperstructurepropertyrelationshipsviacriticalcasimirassemblyofquantumdots
AT crispryanw controllingsuperstructurepropertyrelationshipsviacriticalcasimirassemblyofquantumdots
AT hermidamerinodaniel controllingsuperstructurepropertyrelationshipsviacriticalcasimirassemblyofquantumdots
AT loimariaa controllingsuperstructurepropertyrelationshipsviacriticalcasimirassemblyofquantumdots
AT kodgerthomase controllingsuperstructurepropertyrelationshipsviacriticalcasimirassemblyofquantumdots
AT schallpeter controllingsuperstructurepropertyrelationshipsviacriticalcasimirassemblyofquantumdots