Cargando…

Single-photon emission computed tomography/computed tomography imaging of RAGE in smoking-induced lung injury

BACKGROUND: Expression of the Receptor for Advanced Glycation Endproducts (RAGE) initiates pro-inflammatory pathways resulting in lung destruction. We hypothesized that RAGE directed imaging demonstrates increased lung uptake in smoke-exposure. METHODS: After exposure to room air or to cigarette smo...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldklang, Monica P., Tekabe, Yared, Zelonina, Tina, Trischler, Jordis, Xiao, Rui, Stearns, Kyle, Rodriguez, Krissy, Shields, Alexander, Romanov, Alexander, D’Armiento, Jeanine M., Johnson, Lynne L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558785/
https://www.ncbi.nlm.nih.gov/pubmed/31182072
http://dx.doi.org/10.1186/s12931-019-1064-4
Descripción
Sumario:BACKGROUND: Expression of the Receptor for Advanced Glycation Endproducts (RAGE) initiates pro-inflammatory pathways resulting in lung destruction. We hypothesized that RAGE directed imaging demonstrates increased lung uptake in smoke-exposure. METHODS: After exposure to room air or to cigarette smoke for 4-weeks or 16-weeks, rabbits were injected with (99m)Tc-anti-RAGE F(ab’)(2) and underwent Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) imaging. Lung radiotracer uptake was calculated as percent injected dose (%ID). Lungs were dissected for gamma well counting and histological analysis. RESULTS: (99m)Tc-anti-RAGE F(ab’)(2) SPECT/CT imaging demonstrated increased lung expression of RAGE with smoke exposure compared to room air control at 4-weeks: Room air right (R) 0.75 ± 0.38%ID, left (L) 0.62 ± 0.32%ID vs. Smoke exposed R 0.17 ± 0.03, L 0.17 ± 0.02%ID (p = 0.02 and 0.028, respectively). By 16-weeks of smoke exposure, the uptake decreased to 0.19 ± 0.05%ID R and 0.17 ± 0.05%ID L, significantly lower than 4-week imaging (p = 0.0076 and 0.0129 respectively). Staining for RAGE confirmed SPECT results, with the RAGE ligand HMGB1 upregulated in the macrophages of 4-week smoke-exposed rabbits. CONCLUSIONS: RAGE-directed imaging identified pulmonary RAGE expression acutely in vivo in an animal model of emphysema early after smoke exposure, with diminution over time. These studies document the extent and time course of RAGE expression under smoke exposure conditions and could be utilized for disease monitoring and examining response to future RAGE-targeted therapies. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12931-019-1064-4) contains supplementary material, which is available to authorized users.