Cargando…
Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis
BACKGROUND: Prostate cancer (PCa) is considered one of the most prevalent malignancy globally, and metastasis is a major cause of death. Apigenin (API) is a dietary flavonoid which exerts an antimetastatic effect in various cancer types. Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan 1...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558790/ https://www.ncbi.nlm.nih.gov/pubmed/31182131 http://dx.doi.org/10.1186/s13046-019-1247-3 |
_version_ | 1783425701390581760 |
---|---|
author | Chien, Ming-Hsien Lin, Yung-Wei Wen, Yu-Ching Yang, Yi-Chieh Hsiao, Michael Chang, Junn-Liang Huang, Hsiang-Ching Lee, Wei-Jiunn |
author_facet | Chien, Ming-Hsien Lin, Yung-Wei Wen, Yu-Ching Yang, Yi-Chieh Hsiao, Michael Chang, Junn-Liang Huang, Hsiang-Ching Lee, Wei-Jiunn |
author_sort | Chien, Ming-Hsien |
collection | PubMed |
description | BACKGROUND: Prostate cancer (PCa) is considered one of the most prevalent malignancy globally, and metastasis is a major cause of death. Apigenin (API) is a dietary flavonoid which exerts an antimetastatic effect in various cancer types. Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1) is a crucial modulator of tumor growth and metastasis in cancers. However, the role and underlying regulatory mechanisms of SPOCK1 in the API-mediated antimetastatic effects of PCa remain unclear. METHODS: MTS, colony formation, wound-healing, and transwell assays were conducted to evaluate the effects of API on PCa cell proliferative, migratory, and invasive potentials. In vivo orthotopic bioluminescent xenograft model were employed to determine antitumor activity of API. PCa cells were transfected with either Snail-, Slug-, SPOCK1-overexpressing vector, or small hairpin (sh)SPOCK1 to determine the invasive abilities and expression levels of SPOCK1 and epithelial-to-mesenchymal transition (EMT) biomarkers in response to API treatment. Immunohistochemical (IHC) assays were carried out to evaluate the expression level of SPOCK1 in PCa xenografts and a PCa tissue array. Associations of SPOCK1 expression with clinicopathological features and prognoses of patients with PCa were analyzed by GEO or TCGA RNA-sequencing data. RESULTS: API significantly suppressed in vitro PCa cell proliferation, migration, and invasion and inhibited in vivo PCa tumor growth and metastasis. Moreover, survival times of animals were also prolonged after API treatment. Mechanistic studies revealed that API treatment resulted in downregulation of SPOCK1, which was accompanied by reduced expressions of mesenchymal markers and subsequent attenuation of invasive abilities of PCa cells. Overexpression of SPOCK1 in PCa xenografts resulted in significant promotion of tumor progression and relieved the anticancer activities induced by API, whereas knockdown of SPOCK1 had opposite effects. In clinical, SPOCK1 levels were higher in tumor tissues compared to non-tumor tissues, which was also significantly correlated with shorter disease-free survival in PCa patients. CONCLUSIONS: Levels of SPOCK1 increase with the progression of human PCa which suggests that SPOCK1 may act as a prognostic marker or therapeutic target for patients with PCa. Suppression of SPOCK1-mediated EMT signaling contributes to the antiproliferative and antimetastatic activities of API in vitro and in vivo. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1247-3) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6558790 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65587902019-06-13 Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis Chien, Ming-Hsien Lin, Yung-Wei Wen, Yu-Ching Yang, Yi-Chieh Hsiao, Michael Chang, Junn-Liang Huang, Hsiang-Ching Lee, Wei-Jiunn J Exp Clin Cancer Res Research BACKGROUND: Prostate cancer (PCa) is considered one of the most prevalent malignancy globally, and metastasis is a major cause of death. Apigenin (API) is a dietary flavonoid which exerts an antimetastatic effect in various cancer types. Sparc/osteonectin, cwcv, and kazal-like domains proteoglycan 1 (SPOCK1) is a crucial modulator of tumor growth and metastasis in cancers. However, the role and underlying regulatory mechanisms of SPOCK1 in the API-mediated antimetastatic effects of PCa remain unclear. METHODS: MTS, colony formation, wound-healing, and transwell assays were conducted to evaluate the effects of API on PCa cell proliferative, migratory, and invasive potentials. In vivo orthotopic bioluminescent xenograft model were employed to determine antitumor activity of API. PCa cells were transfected with either Snail-, Slug-, SPOCK1-overexpressing vector, or small hairpin (sh)SPOCK1 to determine the invasive abilities and expression levels of SPOCK1 and epithelial-to-mesenchymal transition (EMT) biomarkers in response to API treatment. Immunohistochemical (IHC) assays were carried out to evaluate the expression level of SPOCK1 in PCa xenografts and a PCa tissue array. Associations of SPOCK1 expression with clinicopathological features and prognoses of patients with PCa were analyzed by GEO or TCGA RNA-sequencing data. RESULTS: API significantly suppressed in vitro PCa cell proliferation, migration, and invasion and inhibited in vivo PCa tumor growth and metastasis. Moreover, survival times of animals were also prolonged after API treatment. Mechanistic studies revealed that API treatment resulted in downregulation of SPOCK1, which was accompanied by reduced expressions of mesenchymal markers and subsequent attenuation of invasive abilities of PCa cells. Overexpression of SPOCK1 in PCa xenografts resulted in significant promotion of tumor progression and relieved the anticancer activities induced by API, whereas knockdown of SPOCK1 had opposite effects. In clinical, SPOCK1 levels were higher in tumor tissues compared to non-tumor tissues, which was also significantly correlated with shorter disease-free survival in PCa patients. CONCLUSIONS: Levels of SPOCK1 increase with the progression of human PCa which suggests that SPOCK1 may act as a prognostic marker or therapeutic target for patients with PCa. Suppression of SPOCK1-mediated EMT signaling contributes to the antiproliferative and antimetastatic activities of API in vitro and in vivo. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13046-019-1247-3) contains supplementary material, which is available to authorized users. BioMed Central 2019-06-10 /pmc/articles/PMC6558790/ /pubmed/31182131 http://dx.doi.org/10.1186/s13046-019-1247-3 Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Chien, Ming-Hsien Lin, Yung-Wei Wen, Yu-Ching Yang, Yi-Chieh Hsiao, Michael Chang, Junn-Liang Huang, Hsiang-Ching Lee, Wei-Jiunn Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis |
title | Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis |
title_full | Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis |
title_fullStr | Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis |
title_full_unstemmed | Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis |
title_short | Targeting the SPOCK1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis |
title_sort | targeting the spock1-snail/slug axis-mediated epithelial-to-mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6558790/ https://www.ncbi.nlm.nih.gov/pubmed/31182131 http://dx.doi.org/10.1186/s13046-019-1247-3 |
work_keys_str_mv | AT chienminghsien targetingthespock1snailslugaxismediatedepithelialtomesenchymaltransitionbyapigenincontributestorepressionofprostatecancermetastasis AT linyungwei targetingthespock1snailslugaxismediatedepithelialtomesenchymaltransitionbyapigenincontributestorepressionofprostatecancermetastasis AT wenyuching targetingthespock1snailslugaxismediatedepithelialtomesenchymaltransitionbyapigenincontributestorepressionofprostatecancermetastasis AT yangyichieh targetingthespock1snailslugaxismediatedepithelialtomesenchymaltransitionbyapigenincontributestorepressionofprostatecancermetastasis AT hsiaomichael targetingthespock1snailslugaxismediatedepithelialtomesenchymaltransitionbyapigenincontributestorepressionofprostatecancermetastasis AT changjunnliang targetingthespock1snailslugaxismediatedepithelialtomesenchymaltransitionbyapigenincontributestorepressionofprostatecancermetastasis AT huanghsiangching targetingthespock1snailslugaxismediatedepithelialtomesenchymaltransitionbyapigenincontributestorepressionofprostatecancermetastasis AT leeweijiunn targetingthespock1snailslugaxismediatedepithelialtomesenchymaltransitionbyapigenincontributestorepressionofprostatecancermetastasis |