Cargando…
The Quest for Model Uncertainty Quantification: A Hybrid Ensemble and Variational Data Assimilation Framework
This article presents a novel approach to couple a deterministic four‐dimensional variational (4DVAR) assimilation method with the particle filter (PF) ensemble data assimilation system, to produce a robust approach for dual‐state‐parameter estimation. In our proposed method, the Hybrid Ensemble and...
Autores principales: | Abbaszadeh, Peyman, Moradkhani, Hamid, Daescu, Dacian N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6559328/ https://www.ncbi.nlm.nih.gov/pubmed/31217643 http://dx.doi.org/10.1029/2018WR023629 |
Ejemplares similares
-
Perspective on uncertainty quantification and reduction in compound flood modeling and forecasting
por: Abbaszadeh, Peyman, et al.
Publicado: (2022) -
Hydrologic Remote Sensing and Land Surface Data Assimilation
por: Moradkhani, Hamid
Publicado: (2008) -
Decision Support Modeling: Data Assimilation, Uncertainty Quantification, and Strategic Abstraction
por: Doherty, John, et al.
Publicado: (2019) -
Data assimilation: the ensemble Kalman filter
por: Evensen, Geir
Publicado: (2007) -
An approach to localization for ensemble-based data assimilation
por: Wang, Bin, et al.
Publicado: (2018)