Cargando…

Binocular cross-correlation analyses of the effects of high-order aberrations on the stereoacuity of eyes with keratoconus

Stereoacuity losses are induced by increased magnitudes and interocular differences in high-order aberrations (HOAs). This study used keratoconus as a model to investigate the impact of HOAs on disparity processing and stereoacuity. HOAs and stereoacuity were quantified in subjects with keratoconus...

Descripción completa

Detalles Bibliográficos
Autores principales: Metlapally, Sangeetha, Bharadwaj, Shrikant R., Roorda, Austin, Nilagiri, Vinay Kumar, Yu, Tiffanie T., Schor, Clifton M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6559754/
https://www.ncbi.nlm.nih.gov/pubmed/31185094
http://dx.doi.org/10.1167/19.6.12
Descripción
Sumario:Stereoacuity losses are induced by increased magnitudes and interocular differences in high-order aberrations (HOAs). This study used keratoconus as a model to investigate the impact of HOAs on disparity processing and stereoacuity. HOAs and stereoacuity were quantified in subjects with keratoconus (n = 21) with HOAs uncorrected (wearing spectacles) or minimized (wearing rigid gas-permeable contact lenses) and in control subjects without keratoconus (n = 5) for 6-mm pupil diameters. Disparity signal quality was estimated using metrics derived from binocular cross-correlation functions of stereo pairs convolved with point-spread functions from these HOAs. Metrics computed for all subjects were compared with stereoacuities. The effects of contrast losses and phase shifts on disparity signal quality were studied independently by manipulating the amplitude and phase components of optical transfer functions. The magnitudes, orientations, interocular relationships in magnitude, and shape of the point-spread function affected the cross-correlation metrics that determine disparity signal quality. Stereoacuity covaries strongly with cross-correlation metrics and moderately with image-quality metrics. Both phase distortions and contrast losses due to HOAs significantly influence computations of binocular disparity. HOA-induced stereoacuity reductions are attributable to disparity blur and noise from image properties that reduce the height and kurtosis of the peak stimulus disparity match of the cross-correlation. Phase distortions and contrast losses due to HOAs are both partly responsible for the greater stereoacuity losses seen with spectacles compared to rigid gas-permeable contact lenses in keratoconus.