Cargando…
Modeling in-vivo protein-DNA binding by combining multiple-instance learning with a hybrid deep neural network
Modeling in-vivo protein-DNA binding is not only fundamental for further understanding of the regulatory mechanisms, but also a challenging task in computational biology. Deep-learning based methods have succeed in modeling in-vivo protein-DNA binding, but they often (1) follow the fully supervised...
Autores principales: | Zhang, Qinhu, Shen, Zhen, Huang, De-Shuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6559991/ https://www.ncbi.nlm.nih.gov/pubmed/31186519 http://dx.doi.org/10.1038/s41598-019-44966-x |
Ejemplares similares
-
Predicting transcription factor binding sites using DNA shape features based on shared hybrid deep learning architecture
por: Wang, Siguo, et al.
Publicado: (2021) -
Multiple instance learning of Calmodulin binding sites
por: Minhas, Fayyaz ul Amir Afsar, et al.
Publicado: (2012) -
A survey on deep learning in DNA/RNA motif mining
por: He, Ying, et al.
Publicado: (2020) -
Classifying and segmenting microscopy images with deep multiple instance learning
por: Kraus, Oren Z., et al.
Publicado: (2016) -
Employing Molecular Conformations for Ligand-Based Virtual Screening with Equivariant Graph Neural Network and Deep Multiple Instance Learning
por: Gu, Yaowen, et al.
Publicado: (2023)