Cargando…
Combined Amylin/GLP-1 pharmacotherapy to promote and sustain long-lasting weight loss
A growing appreciation of the overlapping neuroendocrine mechanisms controlling energy balance has highlighted combination therapies as a promising strategy to enhance sustained weight loss. Here, we investigated whether amylin- and glucagon-like-peptide-1 (GLP-1)-based combination therapies produce...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560126/ https://www.ncbi.nlm.nih.gov/pubmed/31186439 http://dx.doi.org/10.1038/s41598-019-44591-8 |
Sumario: | A growing appreciation of the overlapping neuroendocrine mechanisms controlling energy balance has highlighted combination therapies as a promising strategy to enhance sustained weight loss. Here, we investigated whether amylin- and glucagon-like-peptide-1 (GLP-1)-based combination therapies produce greater food intake- and body weight-suppressive effects compared to monotherapies in both lean and diet-induced obese (DIO) rats. In chow-maintained rats, systemic amylin and GLP-1 combine to reduce meal size. Furthermore, the amylin and GLP-1 analogs salmon calcitonin (sCT) and liraglutide produce synergistic-like reductions in 24 hours energy intake and body weight. The administration of sCT with liraglutide also led to a significant enhancement in cFos-activation in the dorsal-vagal-complex (DVC) compared to mono-therapy, suggesting an activation of distinct, yet overlapping neural substrates in this critical energy balance hub. In DIO animals, long-term daily administration of this combination therapy, specifically in a stepwise manner, results in reduced energy intake and greater body weight loss over time when compared to chronic mono- and combined-treated groups, without affecting GLP-1 receptor, preproglucagon or amylin-receptor gene expression in the DVC. |
---|