Cargando…

Effect of Chaihu Shugan Powder-Contained Serum on Glutamate-Induced Autophagy of Interstitial Cells of Cajal in the Rat Gastric Antrum

Gastrointestinal (GI) motility disorder is caused by excessive autophagy of the interstitial cells of Cajal (ICC). Chaihu Shugan Powder (CSP) is a traditional Chinese medicine with therapeutic benefits in GI motility disorders; however, the underlying mechanism of its therapeutic effect in GI disord...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Ren-Qian, Zhang, Zhi, Ju, Jing, Ling, Jiang-Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560321/
https://www.ncbi.nlm.nih.gov/pubmed/31275417
http://dx.doi.org/10.1155/2019/7318616
Descripción
Sumario:Gastrointestinal (GI) motility disorder is caused by excessive autophagy of the interstitial cells of Cajal (ICC). Chaihu Shugan Powder (CSP) is a traditional Chinese medicine with therapeutic benefits in GI motility disorders; however, the underlying mechanism of its therapeutic effect in GI disorders, especially autophagy of ICC, remains unclear. Thus, this study investigated the effects of CSP-contained serum on glutamate-induced autophagy in rat gastric ICC, exploring its underlying mechanism. In vitro cultured rat stomach ICC were identified by fluorescence microscopy and then stimulated with glutamate (5 mmol/L) for 3 h to establish the autophagy model. These cells were then treated with 10% CSP-containing serum or the autophagy inhibitor 3-methyladenine (3-MA; 5 mmol/L) for 24 h. The control group was cultured with only 10% serum containing physiological saline. The viability of ICC was measured by the CCK-8 assay. The ultrastructure and autophagosomes of ICC were observed using transmission electron microscopy. LC3 expression was detected by immunofluorescence, and LC3, Beclin1, Bcl2, and PI3KC3 expression was detected by western blot analysis. Transmission electron microscopy showed abundant endoplasmic reticulum, mitochondria, and other organelles in the control group, whereas the cells in the autophagy model control group had clear autophagic vacuoles, which were not apparent in both CSP and 3-MA groups. ICC viability was significantly increased by CSP and 3-MA interventions (P < 0.01), accompanied by a decrease in LC3 fluorescence (P < 0.01). Moreover, the expression levels of LC3II/I, Beclin1, and PI3KC3 were significantly decreased (all P < 0.01) with CSP and 3-MA treatment, while Bcl2 expression level was higher than that of the model group (P < 0.01). Thus, CSP can reduce autophagic damage by enhancing Bcl2 expression and downregulating the expression of LC3, Beclin1, and PI3KC3 to protect ICC. These results highlight the potential of CSP in the treatment of GI motility disorders.