Cargando…

Inhibiting Methanogenesis in Rumen Batch Cultures Did Not Increase the Recovery of Metabolic Hydrogen in Microbial Amino Acids

There is an interest in controlling rumen methanogenesis as an opportunity to both decrease the emissions of greenhouse gases and improve the energy efficiency of rumen fermentation. However, the effects of inhibiting rumen methanogenesis on fermentation are incompletely understood even in in vitro...

Descripción completa

Detalles Bibliográficos
Autores principales: Ungerfeld, Emilio M., Aedo, M. Fernanda, Martínez, Emilio D., Saldivia, Marcelo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560395/
https://www.ncbi.nlm.nih.gov/pubmed/31035537
http://dx.doi.org/10.3390/microorganisms7050115
Descripción
Sumario:There is an interest in controlling rumen methanogenesis as an opportunity to both decrease the emissions of greenhouse gases and improve the energy efficiency of rumen fermentation. However, the effects of inhibiting rumen methanogenesis on fermentation are incompletely understood even in in vitro rumen cultures, as the recovery of metabolic hydrogen ([H]) in the main fermentation products consistently decreases with methanogenesis inhibition, evidencing the existence of unaccounted [H] sinks. We hypothesized that inhibiting methanogenesis in rumen batch cultures would redirect [H] towards microbial amino acids (AA) biosynthesis as an alternative [H] sink to methane (CH(4)). The objective of this experiment was to evaluate the effects of eight inhibitors of methanogenesis on digestion, fermentation and the production of microbial biomass and AA in rumen batch cultures growing on cellulose. Changes in the microbial community composition were also studied using denaturing gradient gel electrophoresis (DGGE). Inhibiting methanogenesis did not cause consistent changes in fermentation or the profile of AA, although the effects caused by the different inhibitors generally associated with the changes in the microbial community that they induced. Under the conditions of this experiment, inhibiting methanogenesis did not increase the importance of microbial AA synthesis as a [H] sink.