Cargando…

Optimization of Quality Properties of Gluten-Free Bread by a Mixture Design of Xanthan, Guar, and Hydroxypropyl Methyl Cellulose Gums

The objective of this study was to investigate, by means of a D-optimal mixture design, the combined effects of hydroxypropyl methyl cellulose (HPMC), xanthan (XG), and guar (GG) gums on physicochemical, rheological, and textural properties of gluten-free batter and bread. For each of the quality pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Encina-Zelada, Christian R., Cadavez, Vasco, Teixeira, José A., Gonzales-Barron, Ursula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560447/
https://www.ncbi.nlm.nih.gov/pubmed/31083333
http://dx.doi.org/10.3390/foods8050156
Descripción
Sumario:The objective of this study was to investigate, by means of a D-optimal mixture design, the combined effects of hydroxypropyl methyl cellulose (HPMC), xanthan (XG), and guar (GG) gums on physicochemical, rheological, and textural properties of gluten-free batter and bread. For each of the quality properties measured, a two-factor interaction model was fitted, and the significance of its terms was assessed by analysis of variance. Sticky batters were produced with a combination of high dose of GG (0.60%), high-intermediate dose of HPMC (3.36%), and low dose of XG (0.04%). Combinations of high XG dose (0.60%) and intermediate doses of HPMC (3.08%) and GG (0.32%) rendered GF breads of greater specific volume, while lower bread crust luminosity was obtained with combinations of high GG dose (0.60%), low XG dose (0.04%), and high-intermediate HPMC dose (3.36%). Combinations of high-intermediate HPMC dose (3.36%), high GG dose (0.60%), and low XG dose (0.04%) produced both softer crumbs and bread slices of more open visual texture. By using a desirability function that maximized specific volume while minimizing crust luminosity, crumb hardness, and mean cell density, the optimization of hydrocolloids mixture rendered a value of 0.54, for a combination of 0.24% XG, 0.60% GG, and 3.16% HPMC.