Cargando…
Matrix Riemann–Hilbert problems with jumps across Carleson contours
We develop a theory of [Formula: see text] -matrix Riemann–Hilbert problems for a class of jump contours and jump matrices of low regularity. Our basic assumption is that the contour [Formula: see text] is a finite union of simple closed Carleson curves in the Riemann sphere. In particular, unbounde...
Autor principal: | Lenells, Jonatan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560487/ https://www.ncbi.nlm.nih.gov/pubmed/31258193 http://dx.doi.org/10.1007/s00605-017-1019-0 |
Ejemplares similares
-
Riemann-Hilbert factorization and integrability
por: Kamvissis, S
Publicado: (2002) -
On Carleson’s inequality
por: Kwon, Ern Gun
Publicado: (2018) -
A scalar Riemann–Hilbert problem on the torus: applications to the KdV equation
por: Piorkowski, Mateusz, et al.
Publicado: (2022) -
Diagonalization of the finite Hilbert transform on two adjacent intervals: the Riemann–Hilbert approach
por: Bertola, Marco, et al.
Publicado: (2020) -
Quiver D-modules and the Riemann-Hilbert correspondence
por: Zapf, Stephanie
Publicado: (2015)