Cargando…

Identification of the Components in a Vaccinium oldhamii Extract Showing Inhibitory Activity against Influenza Virus Adsorption

We previously reported that extracts from plants of the Ericaceae genus Vaccinium, commonly known as the kind of blueberry, inhibited the early steps of influenza virus (IFV) infection to host cells, and that the activity was correlated with the total polyphenol content. Particularly potent inhibito...

Descripción completa

Detalles Bibliográficos
Autores principales: Sekizawa, Haruhito, Ikuta, Kazufumi, Ohnishi-Kameyama, Mayumi, Nishiyama, Kyoko, Suzutani, Tatsuo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560511/
https://www.ncbi.nlm.nih.gov/pubmed/31137514
http://dx.doi.org/10.3390/foods8050172
Descripción
Sumario:We previously reported that extracts from plants of the Ericaceae genus Vaccinium, commonly known as the kind of blueberry, inhibited the early steps of influenza virus (IFV) infection to host cells, and that the activity was correlated with the total polyphenol content. Particularly potent inhibitory activity was observed for Vaccinium oldhamii. In this study, we identified the active components in Vaccinium oldhamii involved in the inhibition of IFV infection. We sequentially fractionated the Vaccinium oldhamii extract using a synthetic adsorbent resin column. High inhibitory activity was observed for the fractions eluted with 30%, 40%, and 50% ethanol, and three peaks (peak A, B, and C) considered to represent polyphenols were identified in the fractions by HPLC analysis. Among these peaks, high inhibitory activity was detected for peak A and B, but not for peak C. These peaks were analyzed by LC/MS, which revealed that peak A contained procyanidin B2 and ferulic acid derivatives, whereas peak B contained two ferulic acid O-hexosides, and peak C contained quercetin-3-O-rhamnoside and quercetin-O-pentoside-O-rhamnoside. It is already known that these polyphenols have anti-IFV activity, but we speculate that ferulic acid derivatives are the major contributors to the inhibition of the early steps of IFV replication, such as either adsorption or entry, observed for Vaccinium oldhamii.