Cargando…
Data-driven generation of spatio-temporal routines in human mobility
The generation of realistic spatio-temporal trajectories of human mobility is of fundamental importance in a wide range of applications, such as the developing of protocols for mobile ad-hoc networks or what-if analysis in urban ecosystems. Current generative algorithms fail in accurately reproducin...
Autores principales: | Pappalardo, Luca, Simini, Filippo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560649/ https://www.ncbi.nlm.nih.gov/pubmed/31258383 http://dx.doi.org/10.1007/s10618-017-0548-4 |
Ejemplares similares
-
A Deep Gravity model for mobility flows generation
por: Simini, Filippo, et al.
Publicado: (2021) -
Returners and explorers dichotomy in human mobility
por: Pappalardo, Luca, et al.
Publicado: (2015) -
Score-Driven Modeling of Spatio-Temporal Data
por: Gasperoni, Francesca, et al.
Publicado: (2021) -
Data-driven spatio-temporal modelling of glioblastoma
por: Jørgensen, Andreas Christ Sølvsten, et al.
Publicado: (2023) -
Human Mobility in a Continuum Approach
por: Simini, Filippo, et al.
Publicado: (2013)