Cargando…
Fast and automatic assessment of fall risk by coupling machine learning algorithms with a depth camera to monitor simple balance tasks
BACKGROUND: Falls in the elderly constitute a major health issue associated to population ageing. Current clinical tests evaluating fall risk mostly consist in assessing balance abilities. The devices used for these tests can be expensive or inconvenient to set up. We investigated whether, how and t...
Autores principales: | Dubois, Amandine, Mouthon, Audrey, Sivagnanaselvam, Ranjith Steve, Bresciani, Jean-Pierre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560720/ https://www.ncbi.nlm.nih.gov/pubmed/31186002 http://dx.doi.org/10.1186/s12984-019-0532-x |
Ejemplares similares
-
Automating the Timed Up and Go Test Using a Depth Camera
por: Dubois, Amandine, et al.
Publicado: (2017) -
Identifying Fall Risk Predictors by Monitoring Daily Activities at Home Using a Depth Sensor Coupled to Machine Learning Algorithms
por: Dubois, Amandine, et al.
Publicado: (2021) -
Automatic Ankle Angle Detection by Integrated RGB and Depth Camera System
por: Díaz-San Martín, Guillermo, et al.
Publicado: (2021) -
Balance Training Reduces Brain Activity during Motor Simulation of a Challenging Balance Task in Older Adults: An fMRI Study
por: Ruffieux, Jan, et al.
Publicado: (2018) -
Age-Related Differences in Corticospinal Excitability during Observation and Motor Imagery of Balance Tasks
por: Mouthon, Audrey A., et al.
Publicado: (2016)