Cargando…
Discriminant analysis and machine learning approach for evaluating and improving the performance of immunohistochemical algorithms for COO classification of DLBCL
BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is classified into germinal center-like (GCB) and non-germinal center-like (non-GCB) cell-of-origin groups, entities driven by different oncogenic pathways with different clinical outcomes. DLBCL classification by immunohistochemistry (IHC)-based dec...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560900/ https://www.ncbi.nlm.nih.gov/pubmed/31185999 http://dx.doi.org/10.1186/s12967-019-1951-y |
_version_ | 1783426045887643648 |
---|---|
author | Perfecto-Avalos, Yocanxóchitl Garcia-Gonzalez, Alejandro Hernandez-Reynoso, Ana Sánchez-Ante, Gildardo Ortiz-Hidalgo, Carlos Scott, Sean-Patrick Fuentes-Aguilar, Rita Q. Diaz-Dominguez, Ricardo León-Martínez, Grettel Velasco-Vales, Verónica Cárdenas-Escudero, Mara A. Hernández-Hernández, José A. Santos, Arturo Borbolla-Escoboza, José R. Villela, Luis |
author_facet | Perfecto-Avalos, Yocanxóchitl Garcia-Gonzalez, Alejandro Hernandez-Reynoso, Ana Sánchez-Ante, Gildardo Ortiz-Hidalgo, Carlos Scott, Sean-Patrick Fuentes-Aguilar, Rita Q. Diaz-Dominguez, Ricardo León-Martínez, Grettel Velasco-Vales, Verónica Cárdenas-Escudero, Mara A. Hernández-Hernández, José A. Santos, Arturo Borbolla-Escoboza, José R. Villela, Luis |
author_sort | Perfecto-Avalos, Yocanxóchitl |
collection | PubMed |
description | BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is classified into germinal center-like (GCB) and non-germinal center-like (non-GCB) cell-of-origin groups, entities driven by different oncogenic pathways with different clinical outcomes. DLBCL classification by immunohistochemistry (IHC)-based decision tree algorithms is a simpler reported technique than gene expression profiling (GEP). There is a significant discrepancy between IHC-decision tree algorithms when they are compared to GEP. METHODS: To address these inconsistencies, we applied the machine learning approach considering the same combinations of antibodies as in IHC-decision tree algorithms. Immunohistochemistry data from a public DLBCL database was used to perform comparisons among IHC-decision tree algorithms, and the machine learning structures based on Bayesian, Bayesian simple, Naïve Bayesian, artificial neural networks, and support vector machine to show the best diagnostic model. We implemented the linear discriminant analysis over the complete database, detecting a higher influence of BCL6 antibody for GCB classification and MUM1 for non-GCB classification. RESULTS: The classifier with the highest metrics was the four antibody-based Perfecto–Villela (PV) algorithm with 0.94 accuracy, 0.93 specificity, and 0.95 sensitivity, with a perfect agreement with GEP (κ = 0.88, P < 0.001). After training, a sample of 49 Mexican-mestizo DLBCL patient data was classified by COO for the first time in a testing trial. CONCLUSIONS: Harnessing all the available immunohistochemical data without reliance on the order of examination or cut-off value, we conclude that our PV machine learning algorithm outperforms Hans and other IHC-decision tree algorithms currently in use and represents an affordable and time-saving alternative for DLBCL cell-of-origin identification. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12967-019-1951-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-6560900 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-65609002019-06-14 Discriminant analysis and machine learning approach for evaluating and improving the performance of immunohistochemical algorithms for COO classification of DLBCL Perfecto-Avalos, Yocanxóchitl Garcia-Gonzalez, Alejandro Hernandez-Reynoso, Ana Sánchez-Ante, Gildardo Ortiz-Hidalgo, Carlos Scott, Sean-Patrick Fuentes-Aguilar, Rita Q. Diaz-Dominguez, Ricardo León-Martínez, Grettel Velasco-Vales, Verónica Cárdenas-Escudero, Mara A. Hernández-Hernández, José A. Santos, Arturo Borbolla-Escoboza, José R. Villela, Luis J Transl Med Research BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is classified into germinal center-like (GCB) and non-germinal center-like (non-GCB) cell-of-origin groups, entities driven by different oncogenic pathways with different clinical outcomes. DLBCL classification by immunohistochemistry (IHC)-based decision tree algorithms is a simpler reported technique than gene expression profiling (GEP). There is a significant discrepancy between IHC-decision tree algorithms when they are compared to GEP. METHODS: To address these inconsistencies, we applied the machine learning approach considering the same combinations of antibodies as in IHC-decision tree algorithms. Immunohistochemistry data from a public DLBCL database was used to perform comparisons among IHC-decision tree algorithms, and the machine learning structures based on Bayesian, Bayesian simple, Naïve Bayesian, artificial neural networks, and support vector machine to show the best diagnostic model. We implemented the linear discriminant analysis over the complete database, detecting a higher influence of BCL6 antibody for GCB classification and MUM1 for non-GCB classification. RESULTS: The classifier with the highest metrics was the four antibody-based Perfecto–Villela (PV) algorithm with 0.94 accuracy, 0.93 specificity, and 0.95 sensitivity, with a perfect agreement with GEP (κ = 0.88, P < 0.001). After training, a sample of 49 Mexican-mestizo DLBCL patient data was classified by COO for the first time in a testing trial. CONCLUSIONS: Harnessing all the available immunohistochemical data without reliance on the order of examination or cut-off value, we conclude that our PV machine learning algorithm outperforms Hans and other IHC-decision tree algorithms currently in use and represents an affordable and time-saving alternative for DLBCL cell-of-origin identification. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12967-019-1951-y) contains supplementary material, which is available to authorized users. BioMed Central 2019-06-11 /pmc/articles/PMC6560900/ /pubmed/31185999 http://dx.doi.org/10.1186/s12967-019-1951-y Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Perfecto-Avalos, Yocanxóchitl Garcia-Gonzalez, Alejandro Hernandez-Reynoso, Ana Sánchez-Ante, Gildardo Ortiz-Hidalgo, Carlos Scott, Sean-Patrick Fuentes-Aguilar, Rita Q. Diaz-Dominguez, Ricardo León-Martínez, Grettel Velasco-Vales, Verónica Cárdenas-Escudero, Mara A. Hernández-Hernández, José A. Santos, Arturo Borbolla-Escoboza, José R. Villela, Luis Discriminant analysis and machine learning approach for evaluating and improving the performance of immunohistochemical algorithms for COO classification of DLBCL |
title | Discriminant analysis and machine learning approach for evaluating and improving the performance of immunohistochemical algorithms for COO classification of DLBCL |
title_full | Discriminant analysis and machine learning approach for evaluating and improving the performance of immunohistochemical algorithms for COO classification of DLBCL |
title_fullStr | Discriminant analysis and machine learning approach for evaluating and improving the performance of immunohistochemical algorithms for COO classification of DLBCL |
title_full_unstemmed | Discriminant analysis and machine learning approach for evaluating and improving the performance of immunohistochemical algorithms for COO classification of DLBCL |
title_short | Discriminant analysis and machine learning approach for evaluating and improving the performance of immunohistochemical algorithms for COO classification of DLBCL |
title_sort | discriminant analysis and machine learning approach for evaluating and improving the performance of immunohistochemical algorithms for coo classification of dlbcl |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560900/ https://www.ncbi.nlm.nih.gov/pubmed/31185999 http://dx.doi.org/10.1186/s12967-019-1951-y |
work_keys_str_mv | AT perfectoavalosyocanxochitl discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT garciagonzalezalejandro discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT hernandezreynosoana discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT sanchezantegildardo discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT ortizhidalgocarlos discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT scottseanpatrick discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT fuentesaguilarritaq discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT diazdominguezricardo discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT leonmartinezgrettel discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT velascovalesveronica discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT cardenasescuderomaraa discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT hernandezhernandezjosea discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT santosarturo discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT borbollaescobozajoser discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl AT villelaluis discriminantanalysisandmachinelearningapproachforevaluatingandimprovingtheperformanceofimmunohistochemicalalgorithmsforcooclassificationofdlbcl |