Cargando…

Statistical inference in mechanistic models: time warping for improved gradient matching

Inference in mechanistic models of non-linear differential equations is a challenging problem in current computational statistics. Due to the high computational costs of numerically solving the differential equations in every step of an iterative parameter adaptation scheme, approximate methods base...

Descripción completa

Detalles Bibliográficos
Autores principales: Niu, Mu, Macdonald, Benn, Rogers, Simon, Filippone, Maurizio, Husmeier, Dirk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560940/
https://www.ncbi.nlm.nih.gov/pubmed/31258254
http://dx.doi.org/10.1007/s00180-017-0753-z
_version_ 1783426054241648640
author Niu, Mu
Macdonald, Benn
Rogers, Simon
Filippone, Maurizio
Husmeier, Dirk
author_facet Niu, Mu
Macdonald, Benn
Rogers, Simon
Filippone, Maurizio
Husmeier, Dirk
author_sort Niu, Mu
collection PubMed
description Inference in mechanistic models of non-linear differential equations is a challenging problem in current computational statistics. Due to the high computational costs of numerically solving the differential equations in every step of an iterative parameter adaptation scheme, approximate methods based on gradient matching have become popular. However, these methods critically depend on the smoothing scheme for function interpolation. The present article adapts an idea from manifold learning and demonstrates that a time warping approach aiming to homogenize intrinsic length scales can lead to a significant improvement in parameter estimation accuracy. We demonstrate the effectiveness of this scheme on noisy data from two dynamical systems with periodic limit cycle, a biopathway, and an application from soft-tissue mechanics. Our study also provides a comparative evaluation on a wide range of signal-to-noise ratios.
format Online
Article
Text
id pubmed-6560940
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-65609402019-06-26 Statistical inference in mechanistic models: time warping for improved gradient matching Niu, Mu Macdonald, Benn Rogers, Simon Filippone, Maurizio Husmeier, Dirk Comput Stat Original Paper Inference in mechanistic models of non-linear differential equations is a challenging problem in current computational statistics. Due to the high computational costs of numerically solving the differential equations in every step of an iterative parameter adaptation scheme, approximate methods based on gradient matching have become popular. However, these methods critically depend on the smoothing scheme for function interpolation. The present article adapts an idea from manifold learning and demonstrates that a time warping approach aiming to homogenize intrinsic length scales can lead to a significant improvement in parameter estimation accuracy. We demonstrate the effectiveness of this scheme on noisy data from two dynamical systems with periodic limit cycle, a biopathway, and an application from soft-tissue mechanics. Our study also provides a comparative evaluation on a wide range of signal-to-noise ratios. Springer Berlin Heidelberg 2017-08-09 2018 /pmc/articles/PMC6560940/ /pubmed/31258254 http://dx.doi.org/10.1007/s00180-017-0753-z Text en © The Author(s) 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Paper
Niu, Mu
Macdonald, Benn
Rogers, Simon
Filippone, Maurizio
Husmeier, Dirk
Statistical inference in mechanistic models: time warping for improved gradient matching
title Statistical inference in mechanistic models: time warping for improved gradient matching
title_full Statistical inference in mechanistic models: time warping for improved gradient matching
title_fullStr Statistical inference in mechanistic models: time warping for improved gradient matching
title_full_unstemmed Statistical inference in mechanistic models: time warping for improved gradient matching
title_short Statistical inference in mechanistic models: time warping for improved gradient matching
title_sort statistical inference in mechanistic models: time warping for improved gradient matching
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560940/
https://www.ncbi.nlm.nih.gov/pubmed/31258254
http://dx.doi.org/10.1007/s00180-017-0753-z
work_keys_str_mv AT niumu statisticalinferenceinmechanisticmodelstimewarpingforimprovedgradientmatching
AT macdonaldbenn statisticalinferenceinmechanisticmodelstimewarpingforimprovedgradientmatching
AT rogerssimon statisticalinferenceinmechanisticmodelstimewarpingforimprovedgradientmatching
AT filipponemaurizio statisticalinferenceinmechanisticmodelstimewarpingforimprovedgradientmatching
AT husmeierdirk statisticalinferenceinmechanisticmodelstimewarpingforimprovedgradientmatching