Cargando…
Statistical inference in mechanistic models: time warping for improved gradient matching
Inference in mechanistic models of non-linear differential equations is a challenging problem in current computational statistics. Due to the high computational costs of numerically solving the differential equations in every step of an iterative parameter adaptation scheme, approximate methods base...
Autores principales: | Niu, Mu, Macdonald, Benn, Rogers, Simon, Filippone, Maurizio, Husmeier, Dirk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560940/ https://www.ncbi.nlm.nih.gov/pubmed/31258254 http://dx.doi.org/10.1007/s00180-017-0753-z |
Ejemplares similares
-
Approximate parameter inference in systems biology using gradient matching: a comparative evaluation
por: Macdonald, Benn, et al.
Publicado: (2016) -
Gradient Matching Methods for Computational Inference in Mechanistic Models for Systems Biology: A Review and Comparative Analysis
por: Macdonald, Benn, et al.
Publicado: (2015) -
ShinyKGode: an interactive application for ODE parameter inference using gradient matching
por: Wandy, Joe, et al.
Publicado: (2018) -
Approximate Bayesian inference in semi-mechanistic models
por: Aderhold, Andrej, et al.
Publicado: (2016) -
Fast parameter inference in a biomechanical model of the left ventricle by using statistical emulation
por: Davies, Vinny, et al.
Publicado: (2019)