Cargando…
Early Cyanobacteria and the Innovation of Microbial Sunscreens
Metabolism drives life; thus, understanding how and when various branches of metabolism evolved provides a critical piece to understanding how life has integrated itself into the geochemical cycles of our planet over billions of years. Although the most transformative metabolisms that have significa...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561034/ https://www.ncbi.nlm.nih.gov/pubmed/31186332 http://dx.doi.org/10.1128/mBio.01262-19 |
Sumario: | Metabolism drives life; thus, understanding how and when various branches of metabolism evolved provides a critical piece to understanding how life has integrated itself into the geochemical cycles of our planet over billions of years. Although the most transformative metabolisms that have significantly altered the trajectory of Earth are inherently linked to primary metabolism, natural products that stem from specialized metabolic pathways are also key components to many auxiliary facets of life. Cyanobacteria are primarily known as the original inventors of oxygenic photosynthesis, using sunlight to split water to create our dioxygen-filled atmosphere; however, many of them also have evolved to produce small molecules that function as sunscreens to protect themselves from ultraviolet radiation. Determining when cyanobacteria first evolved the ability to biosynthesize such compounds is an important piece to understanding the rise of oxygen and the eventual success of the phylum. |
---|