Cargando…
Systematic evasion of the restriction-modification barrier in bacteria
Bacteria that are recalcitrant to genetic manipulation using modern in vitro techniques are termed genetically intractable. Genetic intractability is a fundamental barrier to progress that hinders basic, synthetic, and translational microbiology research and development beyond a few model organisms....
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561282/ https://www.ncbi.nlm.nih.gov/pubmed/31097593 http://dx.doi.org/10.1073/pnas.1820256116 |
Sumario: | Bacteria that are recalcitrant to genetic manipulation using modern in vitro techniques are termed genetically intractable. Genetic intractability is a fundamental barrier to progress that hinders basic, synthetic, and translational microbiology research and development beyond a few model organisms. The most common underlying causes of genetic intractability are restriction-modification (RM) systems, ubiquitous defense mechanisms against xenogeneic DNA that hinder the use of genetic approaches in the vast majority of bacteria and exhibit strain-level variation. Here, we describe a systematic approach to overcome RM systems. Our approach was inspired by a simple hypothesis: if a synthetic piece of DNA lacks the highly specific target recognition motifs for a host’s RM systems, then it is invisible to these systems and will not be degraded during artificial transformation. Accordingly, in this process, we determine the genome and methylome of an individual bacterial strain and use this information to define the bacterium’s RM target motifs. We then synonymously eliminate RM targets from the nucleotide sequence of a genetic tool in silico, synthesize an RM-silent “SyngenicDNA” tool, and propagate the tool as minicircle plasmids, termed SyMPL (SyngenicDNA Minicircle Plasmid) tools, before transformation. In a proof-of-principle of our approach, we demonstrate a profound improvement (five orders of magnitude) in the transformation of a clinically relevant USA300 strain of Staphylococcus aureus. This stealth-by-engineering SyngenicDNA approach is effective, flexible, and we expect in future applications could enable microbial genetics free of the restraints of restriction-modification barriers. |
---|