Cargando…

Technique to reduce the minimum toe clearance of young adults during walking to simulate the risk of tripping of the elderly

The elderly gait encompasses several disorders, including a lower minimum toe clearance (MTC) to the ground, which is a potential cause of tripping and falling while walking. Devices that assist in the MTC could reduce such risks. However, the development of effective assistive methods and their eva...

Descripción completa

Detalles Bibliográficos
Autores principales: Ullauri, Jessica Beltran, Akiyama, Yasuhiro, Okamoto, Shogo, Yamada, Yoji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561532/
https://www.ncbi.nlm.nih.gov/pubmed/31188860
http://dx.doi.org/10.1371/journal.pone.0217336
Descripción
Sumario:The elderly gait encompasses several disorders, including a lower minimum toe clearance (MTC) to the ground, which is a potential cause of tripping and falling while walking. Devices that assist in the MTC could reduce such risks. However, the development of effective assistive methods and their evaluation in the elderly might jeopardize their safety. To address this, young adults could take the place of the elderly. We present Muscle Activity Restriction Taping Technique (MARTT) that was devised to simulate the healthy-elderly gait characteristics in the young adults, particularly the lower MTC, by restricting the activity of lower-limb muscles. Two different restriction approaches, one that restricts muscles at the shank and the other at the shank and thigh, simultaneously, were tested at different walking speeds. Both approaches achieved a reduction in the MTC, regardless of the walking speed. The MTC was reduced to a median value lower than 10.1 mm, which is within the range of the MTC values reported for the elderly. The reduction of the MTC significantly increased toe contact to the ground. With the restriction of the shank muscles, the toe-contact frequency was more than twice as that in normal walking, and with the restriction of both the shank and thigh muscles, more than five times. In addition, MARTT reproduced the lower step length, the lower single support phase, and the joint motion compensation characteristic of the elderly gait, in the youth.