Cargando…
On the impact of Citizen Science-derived data quality on deep learning based classification in marine images
The evaluation of large amounts of digital image data is of growing importance for biology, including for the exploration and monitoring of marine habitats. However, only a tiny percentage of the image data collected is evaluated by marine biologists who manually interpret and annotate the image con...
Autores principales: | Langenkämper, Daniel, Simon-Lledó, Erik, Hosking, Brett, Jones, Daniel O. B., Nattkemper, Tim W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561570/ https://www.ncbi.nlm.nih.gov/pubmed/31188894 http://dx.doi.org/10.1371/journal.pone.0218086 |
Ejemplares similares
-
The Impact of Data Augmentations on Deep Learning-Based Marine Object Classification in Benthic Image Transects
por: Tan, Mingkun, et al.
Publicado: (2022) -
MAIA—A machine learning assisted image annotation method for environmental monitoring and exploration
por: Zurowietz, Martin, et al.
Publicado: (2018) -
AKE - the Accelerated k-mer Exploration web-tool for rapid taxonomic classification and visualization
por: Langenkämper, Daniel, et al.
Publicado: (2014) -
A data science approach for multi-sensor marine observatory data monitoring cold water corals (Paragorgia arborea) in two campaigns
por: van Kevelaer, Robin, et al.
Publicado: (2023) -
Deep learning-based diatom taxonomy on virtual slides
por: Kloster, Michael, et al.
Publicado: (2020)