Cargando…

Oral immunization with a probiotic cholera vaccine induces broad protective immunity against Vibrio cholerae colonization and disease in mice

Oral cholera vaccines (OCVs) are being increasingly employed, but current killed formulations generally require multiple doses and lack efficacy in young children. We recently developed a new live-attenuated OCV candidate (HaitiV) derived from a Vibrio cholerae strain isolated during the 2010 Haiti...

Descripción completa

Detalles Bibliográficos
Autores principales: Sit, Brandon, Zhang, Ting, Fakoya, Bolutife, Akter, Aklima, Biswas, Rajib, Ryan, Edward T., Waldor, Matthew K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561597/
https://www.ncbi.nlm.nih.gov/pubmed/31150386
http://dx.doi.org/10.1371/journal.pntd.0007417
Descripción
Sumario:Oral cholera vaccines (OCVs) are being increasingly employed, but current killed formulations generally require multiple doses and lack efficacy in young children. We recently developed a new live-attenuated OCV candidate (HaitiV) derived from a Vibrio cholerae strain isolated during the 2010 Haiti cholera epidemic. HaitiV exhibited an unexpected probiotic-like activity in infant rabbits, preventing intestinal colonization and disease by wild-type V. cholerae before the onset of adaptive immunity. However, it remained unknown whether HaitiV would behave similarly to other OCVs to stimulate adaptive immunity against V. cholerae. Here, we orally immunized adult germ-free female mice to test HaitiV’s immunogenicity. HaitiV safely and stably colonized vaccinated mice and induced known adaptive immune correlates of cholera protection within 14 days of administration. Pups born to immunized mice were protected against lethal challenges of both homologous and heterologous V. cholerae strains. Cross-fostering experiments revealed that protection was not dependent on vaccine colonization in or transmission to the pups. These findings demonstrate the protective immunogenicity of HaitiV and support its development as a new tool for limiting cholera.