Cargando…
Local online learning in recurrent networks with random feedback
Recurrent neural networks (RNNs) enable the production and processing of time-dependent signals such as those involved in movement or working memory. Classic gradient-based algorithms for training RNNs have been available for decades, but are inconsistent with biological features of the brain, such...
Autor principal: | Murray, James M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6561704/ https://www.ncbi.nlm.nih.gov/pubmed/31124785 http://dx.doi.org/10.7554/eLife.43299 |
Ejemplares similares
-
Direct Feedback Alignment With Sparse Connections for Local Learning
por: Crafton, Brian, et al.
Publicado: (2019) -
Learning Without Feedback: Fixed Random Learning Signals Allow for Feedforward Training of Deep Neural Networks
por: Frenkel, Charlotte, et al.
Publicado: (2021) -
Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network
por: Gilra, Aditya, et al.
Publicado: (2017) -
Stochastic variational learning in recurrent spiking networks
por: Jimenez Rezende, Danilo, et al.
Publicado: (2014) -
Functional MRI study of feedback-based reinforcement learning in depression
por: Kustubayeva, Almira M., et al.
Publicado: (2022)