Cargando…
Machine learning for email spam filtering: review, approaches and open research problems
The upsurge in the volume of unwanted emails called spam has created an intense need for the development of more dependable and robust antispam filters. Machine learning methods of recent are being used to successfully detect and filter spam emails. We present a systematic review of some of the popu...
Autores principales: | Dada, Emmanuel Gbenga, Bassi, Joseph Stephen, Chiroma, Haruna, Abdulhamid, Shafi'i Muhammad, Adetunmbi, Adebayo Olusola, Ajibuwa, Opeyemi Emmanuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562150/ https://www.ncbi.nlm.nih.gov/pubmed/31211254 http://dx.doi.org/10.1016/j.heliyon.2019.e01802 |
Ejemplares similares
-
Machine Learning for Email: Spam Filtering and Priority Inbox
por: Conway, Drew, et al.
Publicado: (2011) -
PreciseMail anti-spam gateway allows users more control over spam definitions; unwanted email is eliminated with no false positives
por: ten Bruggencate, J
Publicado: (2003) -
SPONGY (SPam ONtoloGY): Email Classification Using Two-Level Dynamic Ontology
por: Youn, Seongwook
Publicado: (2014) -
Spam Kings
por: McWilliams, Brian
Publicado: (2014) -
Stopping spam
por: Schwartz, Alan, et al.
Publicado: (1998)