Cargando…

hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α(1)-antitrypsin deficiency

BACKGROUND & AIMS: α(1)-Antitrypsin deficiency (A1ATD) is an autosomal recessive disorder caused by mutations in the SERPINA1 gene. Individuals with the Z variant (Gly342Lys) retain polymerised protein in the endoplasmic reticulum (ER) of their hepatocytes, predisposing them to liver disease. Th...

Descripción completa

Detalles Bibliográficos
Autores principales: Segeritz, Charis-Patricia, Rashid, Sheikh Tamir, de Brito, Miguel Cardoso, Serra, Maria Paola, Ordonez, Adriana, Morell, Carola Maria, Kaserman, Joseph E., Madrigal, Pedro, Hannan, Nicholas R.F., Gatto, Laurent, Tan, Lu, Wilson, Andrew A., Lilley, Kathryn, Marciniak, Stefan J., Gooptu, Bibek, Lomas, David A., Vallier, Ludovic
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562205/
https://www.ncbi.nlm.nih.gov/pubmed/29879455
http://dx.doi.org/10.1016/j.jhep.2018.05.028
_version_ 1783426250566533120
author Segeritz, Charis-Patricia
Rashid, Sheikh Tamir
de Brito, Miguel Cardoso
Serra, Maria Paola
Ordonez, Adriana
Morell, Carola Maria
Kaserman, Joseph E.
Madrigal, Pedro
Hannan, Nicholas R.F.
Gatto, Laurent
Tan, Lu
Wilson, Andrew A.
Lilley, Kathryn
Marciniak, Stefan J.
Gooptu, Bibek
Lomas, David A.
Vallier, Ludovic
author_facet Segeritz, Charis-Patricia
Rashid, Sheikh Tamir
de Brito, Miguel Cardoso
Serra, Maria Paola
Ordonez, Adriana
Morell, Carola Maria
Kaserman, Joseph E.
Madrigal, Pedro
Hannan, Nicholas R.F.
Gatto, Laurent
Tan, Lu
Wilson, Andrew A.
Lilley, Kathryn
Marciniak, Stefan J.
Gooptu, Bibek
Lomas, David A.
Vallier, Ludovic
author_sort Segeritz, Charis-Patricia
collection PubMed
description BACKGROUND & AIMS: α(1)-Antitrypsin deficiency (A1ATD) is an autosomal recessive disorder caused by mutations in the SERPINA1 gene. Individuals with the Z variant (Gly342Lys) retain polymerised protein in the endoplasmic reticulum (ER) of their hepatocytes, predisposing them to liver disease. The concomitant lack of circulating A1AT also causes lung emphysema. Greater insight into the mechanisms that link protein misfolding to liver injury will facilitate the design of novel therapies. METHODS: Human-induced pluripotent stem cell (hiPSC)-derived hepatocytes provide a novel approach to interrogate the molecular mechanisms of A1ATD because of their patient-specific genetic architecture and reflection of human physiology. To that end, we utilised patient-specific hiPSC hepatocyte-like cells (ZZ-HLCs) derived from an A1ATD (ZZ) patient, which faithfully recapitulated key aspects of the disease at the molecular and cellular level. Subsequent functional and “omics” comparisons of these cells with their genetically corrected isogenic-line (RR-HLCs) and primary hepatocytes/human tissue enabled identification of new molecular markers and disease signatures. RESULTS: Our studies showed that abnormal A1AT polymer processing (immobilised ER components, reduced luminal protein mobility and disrupted ER cisternae) occurred heterogeneously within hepatocyte populations and was associated with disrupted mitochondrial structure, presence of the oncogenic protein AKR1B10 and two upregulated molecular clusters centred on members of inflammatory (IL-18 and Caspase-4) and unfolded protein response (Calnexin and Calreticulin) pathways. These results were validated in a second patient-specific hiPSC line. CONCLUSIONS: Our data identified novel pathways that potentially link the expression of Z A1AT polymers to liver disease. These findings could help pave the way towards identification of new therapeutic targets for the treatment of A1ATD. LAY SUMMARY: This study compared the gene expression and protein profiles of healthy liver cells and those affected by the inherited disease α(1)-antitrypsin deficiency. This approach identified specific factors primarily present in diseased samples which could provide new targets for drug development. This study also demonstrates the interest of using hepatic cells generated from human-induced pluripotent stem cells to model liver disease in vitro for uncovering new mechanisms with clinical relevance.
format Online
Article
Text
id pubmed-6562205
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-65622052019-06-17 hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α(1)-antitrypsin deficiency Segeritz, Charis-Patricia Rashid, Sheikh Tamir de Brito, Miguel Cardoso Serra, Maria Paola Ordonez, Adriana Morell, Carola Maria Kaserman, Joseph E. Madrigal, Pedro Hannan, Nicholas R.F. Gatto, Laurent Tan, Lu Wilson, Andrew A. Lilley, Kathryn Marciniak, Stefan J. Gooptu, Bibek Lomas, David A. Vallier, Ludovic J Hepatol Article BACKGROUND & AIMS: α(1)-Antitrypsin deficiency (A1ATD) is an autosomal recessive disorder caused by mutations in the SERPINA1 gene. Individuals with the Z variant (Gly342Lys) retain polymerised protein in the endoplasmic reticulum (ER) of their hepatocytes, predisposing them to liver disease. The concomitant lack of circulating A1AT also causes lung emphysema. Greater insight into the mechanisms that link protein misfolding to liver injury will facilitate the design of novel therapies. METHODS: Human-induced pluripotent stem cell (hiPSC)-derived hepatocytes provide a novel approach to interrogate the molecular mechanisms of A1ATD because of their patient-specific genetic architecture and reflection of human physiology. To that end, we utilised patient-specific hiPSC hepatocyte-like cells (ZZ-HLCs) derived from an A1ATD (ZZ) patient, which faithfully recapitulated key aspects of the disease at the molecular and cellular level. Subsequent functional and “omics” comparisons of these cells with their genetically corrected isogenic-line (RR-HLCs) and primary hepatocytes/human tissue enabled identification of new molecular markers and disease signatures. RESULTS: Our studies showed that abnormal A1AT polymer processing (immobilised ER components, reduced luminal protein mobility and disrupted ER cisternae) occurred heterogeneously within hepatocyte populations and was associated with disrupted mitochondrial structure, presence of the oncogenic protein AKR1B10 and two upregulated molecular clusters centred on members of inflammatory (IL-18 and Caspase-4) and unfolded protein response (Calnexin and Calreticulin) pathways. These results were validated in a second patient-specific hiPSC line. CONCLUSIONS: Our data identified novel pathways that potentially link the expression of Z A1AT polymers to liver disease. These findings could help pave the way towards identification of new therapeutic targets for the treatment of A1ATD. LAY SUMMARY: This study compared the gene expression and protein profiles of healthy liver cells and those affected by the inherited disease α(1)-antitrypsin deficiency. This approach identified specific factors primarily present in diseased samples which could provide new targets for drug development. This study also demonstrates the interest of using hepatic cells generated from human-induced pluripotent stem cells to model liver disease in vitro for uncovering new mechanisms with clinical relevance. Elsevier 2018-10 /pmc/articles/PMC6562205/ /pubmed/29879455 http://dx.doi.org/10.1016/j.jhep.2018.05.028 Text en © 2018 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Segeritz, Charis-Patricia
Rashid, Sheikh Tamir
de Brito, Miguel Cardoso
Serra, Maria Paola
Ordonez, Adriana
Morell, Carola Maria
Kaserman, Joseph E.
Madrigal, Pedro
Hannan, Nicholas R.F.
Gatto, Laurent
Tan, Lu
Wilson, Andrew A.
Lilley, Kathryn
Marciniak, Stefan J.
Gooptu, Bibek
Lomas, David A.
Vallier, Ludovic
hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α(1)-antitrypsin deficiency
title hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α(1)-antitrypsin deficiency
title_full hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α(1)-antitrypsin deficiency
title_fullStr hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α(1)-antitrypsin deficiency
title_full_unstemmed hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α(1)-antitrypsin deficiency
title_short hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α(1)-antitrypsin deficiency
title_sort hipsc hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in α(1)-antitrypsin deficiency
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562205/
https://www.ncbi.nlm.nih.gov/pubmed/29879455
http://dx.doi.org/10.1016/j.jhep.2018.05.028
work_keys_str_mv AT segeritzcharispatricia hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT rashidsheikhtamir hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT debritomiguelcardoso hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT serramariapaola hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT ordonezadriana hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT morellcarolamaria hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT kasermanjosephe hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT madrigalpedro hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT hannannicholasrf hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT gattolaurent hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT tanlu hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT wilsonandrewa hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT lilleykathryn hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT marciniakstefanj hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT gooptubibek hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT lomasdavida hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency
AT vallierludovic hipschepatocytemodeldemonstratestheroleofunfoldedproteinresponseandinflammatorynetworksina1antitrypsindeficiency