Cargando…
Statistical power estimation dataset for external validation GoF tests on EVT distribution
This paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, h...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562228/ https://www.ncbi.nlm.nih.gov/pubmed/31211211 http://dx.doi.org/10.1016/j.dib.2019.104071 |
_version_ | 1783426255372156928 |
---|---|
author | Reghenzani, Federico Massari, Giuseppe Santinelli, Luca Fornaciari, William |
author_facet | Reghenzani, Federico Massari, Giuseppe Santinelli, Luca Fornaciari, William |
author_sort | Reghenzani, Federico |
collection | PubMed |
description | This paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, high precision estimations of the statistical power of KS, AD, and MAD goodness-of-fit tests have been computed using a Monte Carlo approach. The full raw dataset resulting from this analysis has been published as reference for future studies: https://doi.org/10.17632/hh2byrbbmf.1. |
format | Online Article Text |
id | pubmed-6562228 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-65622282019-06-17 Statistical power estimation dataset for external validation GoF tests on EVT distribution Reghenzani, Federico Massari, Giuseppe Santinelli, Luca Fornaciari, William Data Brief Mathematics This paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, high precision estimations of the statistical power of KS, AD, and MAD goodness-of-fit tests have been computed using a Monte Carlo approach. The full raw dataset resulting from this analysis has been published as reference for future studies: https://doi.org/10.17632/hh2byrbbmf.1. Elsevier 2019-05-28 /pmc/articles/PMC6562228/ /pubmed/31211211 http://dx.doi.org/10.1016/j.dib.2019.104071 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Mathematics Reghenzani, Federico Massari, Giuseppe Santinelli, Luca Fornaciari, William Statistical power estimation dataset for external validation GoF tests on EVT distribution |
title | Statistical power estimation dataset for external validation GoF tests on EVT distribution |
title_full | Statistical power estimation dataset for external validation GoF tests on EVT distribution |
title_fullStr | Statistical power estimation dataset for external validation GoF tests on EVT distribution |
title_full_unstemmed | Statistical power estimation dataset for external validation GoF tests on EVT distribution |
title_short | Statistical power estimation dataset for external validation GoF tests on EVT distribution |
title_sort | statistical power estimation dataset for external validation gof tests on evt distribution |
topic | Mathematics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562228/ https://www.ncbi.nlm.nih.gov/pubmed/31211211 http://dx.doi.org/10.1016/j.dib.2019.104071 |
work_keys_str_mv | AT reghenzanifederico statisticalpowerestimationdatasetforexternalvalidationgoftestsonevtdistribution AT massarigiuseppe statisticalpowerestimationdatasetforexternalvalidationgoftestsonevtdistribution AT santinelliluca statisticalpowerestimationdatasetforexternalvalidationgoftestsonevtdistribution AT fornaciariwilliam statisticalpowerestimationdatasetforexternalvalidationgoftestsonevtdistribution |