Cargando…

Statistical power estimation dataset for external validation GoF tests on EVT distribution

This paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, h...

Descripción completa

Detalles Bibliográficos
Autores principales: Reghenzani, Federico, Massari, Giuseppe, Santinelli, Luca, Fornaciari, William
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562228/
https://www.ncbi.nlm.nih.gov/pubmed/31211211
http://dx.doi.org/10.1016/j.dib.2019.104071
_version_ 1783426255372156928
author Reghenzani, Federico
Massari, Giuseppe
Santinelli, Luca
Fornaciari, William
author_facet Reghenzani, Federico
Massari, Giuseppe
Santinelli, Luca
Fornaciari, William
author_sort Reghenzani, Federico
collection PubMed
description This paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, high precision estimations of the statistical power of KS, AD, and MAD goodness-of-fit tests have been computed using a Monte Carlo approach. The full raw dataset resulting from this analysis has been published as reference for future studies: https://doi.org/10.17632/hh2byrbbmf.1.
format Online
Article
Text
id pubmed-6562228
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-65622282019-06-17 Statistical power estimation dataset for external validation GoF tests on EVT distribution Reghenzani, Federico Massari, Giuseppe Santinelli, Luca Fornaciari, William Data Brief Mathematics This paper presents the statistical power estimation of goodness-of-fit tests for Extreme Value Theory (EVT) distributions. The presented dataset provides quantitative information on the statistical power, in order to enable the sample size selection in external validation scenario. In particular, high precision estimations of the statistical power of KS, AD, and MAD goodness-of-fit tests have been computed using a Monte Carlo approach. The full raw dataset resulting from this analysis has been published as reference for future studies: https://doi.org/10.17632/hh2byrbbmf.1. Elsevier 2019-05-28 /pmc/articles/PMC6562228/ /pubmed/31211211 http://dx.doi.org/10.1016/j.dib.2019.104071 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Mathematics
Reghenzani, Federico
Massari, Giuseppe
Santinelli, Luca
Fornaciari, William
Statistical power estimation dataset for external validation GoF tests on EVT distribution
title Statistical power estimation dataset for external validation GoF tests on EVT distribution
title_full Statistical power estimation dataset for external validation GoF tests on EVT distribution
title_fullStr Statistical power estimation dataset for external validation GoF tests on EVT distribution
title_full_unstemmed Statistical power estimation dataset for external validation GoF tests on EVT distribution
title_short Statistical power estimation dataset for external validation GoF tests on EVT distribution
title_sort statistical power estimation dataset for external validation gof tests on evt distribution
topic Mathematics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562228/
https://www.ncbi.nlm.nih.gov/pubmed/31211211
http://dx.doi.org/10.1016/j.dib.2019.104071
work_keys_str_mv AT reghenzanifederico statisticalpowerestimationdatasetforexternalvalidationgoftestsonevtdistribution
AT massarigiuseppe statisticalpowerestimationdatasetforexternalvalidationgoftestsonevtdistribution
AT santinelliluca statisticalpowerestimationdatasetforexternalvalidationgoftestsonevtdistribution
AT fornaciariwilliam statisticalpowerestimationdatasetforexternalvalidationgoftestsonevtdistribution