Cargando…

Physiological and RNA sequencing data of white lupin plants grown under Fe and P deficiency

This DIB article provides details about transcriptional and physiological response of Fe- and P-deficient white lupin roots, an extensive and complete description of plant response is shown in the research article “Physiological and transcriptomic data highlight common features between iron and phos...

Descripción completa

Detalles Bibliográficos
Autores principales: Zanin, Laura, Venuti, Silvia, Marroni, Fabio, Franco, Alessandro, Morgante, Michele, Pinton, Roberto, Tomasi, Nicola
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562269/
https://www.ncbi.nlm.nih.gov/pubmed/31211210
http://dx.doi.org/10.1016/j.dib.2019.104069
Descripción
Sumario:This DIB article provides details about transcriptional and physiological response of Fe- and P-deficient white lupin roots, an extensive and complete description of plant response is shown in the research article “Physiological and transcriptomic data highlight common features between iron and phosphorus acquisition mechanisms in white lupin roots” Venuti et al. [1]. White lupin plants were grown under hydroponic system and three different nutritional regimes: Fe deficiency (-Fe), P deficiency (-P), or Fe and P sufficiency (+P + Fe). Depending on nutritional treatment, white lupin plants showed changes in the fresh weights, in root external acidification and Fe(III)-reductase activity. Moreover, the transcriptomic changes occurring in apices and clusters of Fe-deficient lupin roots were investigated and compared with differences of gene expression occurring in P-deficient plants (-P) and in Fe- and P-sufficient plants (+P + Fe). Transcriptomic data are available in the public repository Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under the series entry (GSE112220). The annotation, mapping and enrichment analyses of differentially modulated transcripts were assessed.