Cargando…

White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – The MRI-GENIE study

White matter hyperintensity (WMH) burden is a critically important cerebrovascular phenotype linked to prediction of diagnosis and prognosis of diseases, such as acute ischemic stroke (AIS). However, current approaches to its quantification on clinical MRI often rely on time intensive manual delinea...

Descripción completa

Detalles Bibliográficos
Autores principales: Schirmer, Markus D., Dalca, Adrian V., Sridharan, Ramesh, Giese, Anne-Katrin, Donahue, Kathleen L., Nardin, Marco J., Mocking, Steven J.T., McIntosh, Elissa C., Frid, Petrea, Wasselius, Johan, Cole, John W., Holmegaard, Lukas, Jern, Christina, Jimenez-Conde, Jordi, Lemmens, Robin, Lindgren, Arne G., Meschia, James F., Roquer, Jaume, Rundek, Tatjana, Sacco, Ralph L., Schmidt, Reinhold, Sharma, Pankaj, Slowik, Agnieszka, Thijs, Vincent, Woo, Daniel, Vagal, Achala, Xu, Huichun, Kittner, Steven J., McArdle, Patrick F., Mitchell, Braxton D., Rosand, Jonathan, Worrall, Bradford B., Wu, Ona, Golland, Polina, Rost, Natalia S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562316/
https://www.ncbi.nlm.nih.gov/pubmed/31200151
http://dx.doi.org/10.1016/j.nicl.2019.101884
_version_ 1783426274921807872
author Schirmer, Markus D.
Dalca, Adrian V.
Sridharan, Ramesh
Giese, Anne-Katrin
Donahue, Kathleen L.
Nardin, Marco J.
Mocking, Steven J.T.
McIntosh, Elissa C.
Frid, Petrea
Wasselius, Johan
Cole, John W.
Holmegaard, Lukas
Jern, Christina
Jimenez-Conde, Jordi
Lemmens, Robin
Lindgren, Arne G.
Meschia, James F.
Roquer, Jaume
Rundek, Tatjana
Sacco, Ralph L.
Schmidt, Reinhold
Sharma, Pankaj
Slowik, Agnieszka
Thijs, Vincent
Woo, Daniel
Vagal, Achala
Xu, Huichun
Kittner, Steven J.
McArdle, Patrick F.
Mitchell, Braxton D.
Rosand, Jonathan
Worrall, Bradford B.
Wu, Ona
Golland, Polina
Rost, Natalia S.
author_facet Schirmer, Markus D.
Dalca, Adrian V.
Sridharan, Ramesh
Giese, Anne-Katrin
Donahue, Kathleen L.
Nardin, Marco J.
Mocking, Steven J.T.
McIntosh, Elissa C.
Frid, Petrea
Wasselius, Johan
Cole, John W.
Holmegaard, Lukas
Jern, Christina
Jimenez-Conde, Jordi
Lemmens, Robin
Lindgren, Arne G.
Meschia, James F.
Roquer, Jaume
Rundek, Tatjana
Sacco, Ralph L.
Schmidt, Reinhold
Sharma, Pankaj
Slowik, Agnieszka
Thijs, Vincent
Woo, Daniel
Vagal, Achala
Xu, Huichun
Kittner, Steven J.
McArdle, Patrick F.
Mitchell, Braxton D.
Rosand, Jonathan
Worrall, Bradford B.
Wu, Ona
Golland, Polina
Rost, Natalia S.
author_sort Schirmer, Markus D.
collection PubMed
description White matter hyperintensity (WMH) burden is a critically important cerebrovascular phenotype linked to prediction of diagnosis and prognosis of diseases, such as acute ischemic stroke (AIS). However, current approaches to its quantification on clinical MRI often rely on time intensive manual delineation of the disease on T2 fluid attenuated inverse recovery (FLAIR), which hinders high-throughput analyses such as genetic discovery. In this work, we present a fully automated pipeline for quantification of WMH in clinical large-scale studies of AIS. The pipeline incorporates automated brain extraction, intensity normalization and WMH segmentation using spatial priors. We first propose a brain extraction algorithm based on a fully convolutional deep learning architecture, specifically designed for clinical FLAIR images. We demonstrate that our method for brain extraction outperforms two commonly used and publicly available methods on clinical quality images in a set of 144 subject scans across 12 acquisition centers, based on dice coefficient (median 0.95; inter-quartile range 0.94–0.95; p < 0.01) and Pearson correlation of total brain volume (r = 0.90). Subsequently, we apply it to the large-scale clinical multi-site MRI-GENIE study (N = 2783) and identify a decrease in total brain volume of −2.4 cc/year. Additionally, we show that the resulting total brain volumes can successfully be used for quality control of image preprocessing. Finally, we obtain WMH volumes by building on an existing automatic WMH segmentation algorithm that delineates and distinguishes between different cerebrovascular pathologies. The learning method mimics expert knowledge of the spatial distribution of the WMH burden using a convolutional auto-encoder. This enables successful computation of WMH volumes of 2533 clinical AIS patients. We utilize these results to demonstrate the increase of WMH burden with age (0.950 cc/year) and show that single site estimates can be biased by the number of subjects recruited.
format Online
Article
Text
id pubmed-6562316
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-65623162019-06-17 White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – The MRI-GENIE study Schirmer, Markus D. Dalca, Adrian V. Sridharan, Ramesh Giese, Anne-Katrin Donahue, Kathleen L. Nardin, Marco J. Mocking, Steven J.T. McIntosh, Elissa C. Frid, Petrea Wasselius, Johan Cole, John W. Holmegaard, Lukas Jern, Christina Jimenez-Conde, Jordi Lemmens, Robin Lindgren, Arne G. Meschia, James F. Roquer, Jaume Rundek, Tatjana Sacco, Ralph L. Schmidt, Reinhold Sharma, Pankaj Slowik, Agnieszka Thijs, Vincent Woo, Daniel Vagal, Achala Xu, Huichun Kittner, Steven J. McArdle, Patrick F. Mitchell, Braxton D. Rosand, Jonathan Worrall, Bradford B. Wu, Ona Golland, Polina Rost, Natalia S. Neuroimage Clin Regular Article White matter hyperintensity (WMH) burden is a critically important cerebrovascular phenotype linked to prediction of diagnosis and prognosis of diseases, such as acute ischemic stroke (AIS). However, current approaches to its quantification on clinical MRI often rely on time intensive manual delineation of the disease on T2 fluid attenuated inverse recovery (FLAIR), which hinders high-throughput analyses such as genetic discovery. In this work, we present a fully automated pipeline for quantification of WMH in clinical large-scale studies of AIS. The pipeline incorporates automated brain extraction, intensity normalization and WMH segmentation using spatial priors. We first propose a brain extraction algorithm based on a fully convolutional deep learning architecture, specifically designed for clinical FLAIR images. We demonstrate that our method for brain extraction outperforms two commonly used and publicly available methods on clinical quality images in a set of 144 subject scans across 12 acquisition centers, based on dice coefficient (median 0.95; inter-quartile range 0.94–0.95; p < 0.01) and Pearson correlation of total brain volume (r = 0.90). Subsequently, we apply it to the large-scale clinical multi-site MRI-GENIE study (N = 2783) and identify a decrease in total brain volume of −2.4 cc/year. Additionally, we show that the resulting total brain volumes can successfully be used for quality control of image preprocessing. Finally, we obtain WMH volumes by building on an existing automatic WMH segmentation algorithm that delineates and distinguishes between different cerebrovascular pathologies. The learning method mimics expert knowledge of the spatial distribution of the WMH burden using a convolutional auto-encoder. This enables successful computation of WMH volumes of 2533 clinical AIS patients. We utilize these results to demonstrate the increase of WMH burden with age (0.950 cc/year) and show that single site estimates can be biased by the number of subjects recruited. Elsevier 2019-05-29 /pmc/articles/PMC6562316/ /pubmed/31200151 http://dx.doi.org/10.1016/j.nicl.2019.101884 Text en © 2019 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Regular Article
Schirmer, Markus D.
Dalca, Adrian V.
Sridharan, Ramesh
Giese, Anne-Katrin
Donahue, Kathleen L.
Nardin, Marco J.
Mocking, Steven J.T.
McIntosh, Elissa C.
Frid, Petrea
Wasselius, Johan
Cole, John W.
Holmegaard, Lukas
Jern, Christina
Jimenez-Conde, Jordi
Lemmens, Robin
Lindgren, Arne G.
Meschia, James F.
Roquer, Jaume
Rundek, Tatjana
Sacco, Ralph L.
Schmidt, Reinhold
Sharma, Pankaj
Slowik, Agnieszka
Thijs, Vincent
Woo, Daniel
Vagal, Achala
Xu, Huichun
Kittner, Steven J.
McArdle, Patrick F.
Mitchell, Braxton D.
Rosand, Jonathan
Worrall, Bradford B.
Wu, Ona
Golland, Polina
Rost, Natalia S.
White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – The MRI-GENIE study
title White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – The MRI-GENIE study
title_full White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – The MRI-GENIE study
title_fullStr White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – The MRI-GENIE study
title_full_unstemmed White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – The MRI-GENIE study
title_short White matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – The MRI-GENIE study
title_sort white matter hyperintensity quantification in large-scale clinical acute ischemic stroke cohorts – the mri-genie study
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562316/
https://www.ncbi.nlm.nih.gov/pubmed/31200151
http://dx.doi.org/10.1016/j.nicl.2019.101884
work_keys_str_mv AT schirmermarkusd whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT dalcaadrianv whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT sridharanramesh whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT gieseannekatrin whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT donahuekathleenl whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT nardinmarcoj whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT mockingstevenjt whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT mcintoshelissac whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT fridpetrea whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT wasseliusjohan whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT colejohnw whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT holmegaardlukas whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT jernchristina whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT jimenezcondejordi whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT lemmensrobin whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT lindgrenarneg whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT meschiajamesf whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT roquerjaume whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT rundektatjana whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT saccoralphl whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT schmidtreinhold whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT sharmapankaj whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT slowikagnieszka whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT thijsvincent whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT woodaniel whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT vagalachala whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT xuhuichun whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT kittnerstevenj whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT mcardlepatrickf whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT mitchellbraxtond whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT rosandjonathan whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT worrallbradfordb whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT wuona whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT gollandpolina whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT rostnatalias whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy
AT whitematterhyperintensityquantificationinlargescaleclinicalacuteischemicstrokecohortsthemrigeniestudy