Cargando…

Comprehensive Genomic Survey, Characterization and Expression Analysis of the HECT Gene Family in Brassica rapa L. and Brassica oleracea L.

The HECT-domain protein family is one of the most important classes of E3 ligases. While the roles of this family in human diseases have been intensively studied, the information for plant HECTs is limited. In the present study, we performed the identification of HECT genes in Brassica rapa and Bras...

Descripción completa

Detalles Bibliográficos
Autores principales: Alam, Intikhab, Cui, Dong-Li, Batool, Khadija, Yang, Yan-Qing, Lu, Yun-Hai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562426/
https://www.ncbi.nlm.nih.gov/pubmed/31137879
http://dx.doi.org/10.3390/genes10050400
Descripción
Sumario:The HECT-domain protein family is one of the most important classes of E3 ligases. While the roles of this family in human diseases have been intensively studied, the information for plant HECTs is limited. In the present study, we performed the identification of HECT genes in Brassica rapa and Brassica oleracea, followed by analysis of phylogeny, gene structure, additional domains, putative cis-regulatory elements, chromosomal location, synteny, and expression. Ten and 13 HECT genes were respectively identified in B. rapa and B. oleracea and then resolved into seven groups along with their Arabidopsis orthologs by phylogenetic analysis. This classification is well supported by analyses of gene structure, motif composition within the HECT domain and additional protein domains. Ka/Ks ratio analysis showed that these HECT genes primarily underwent purifying selection with varied selection pressures resulting in different rates of evolution. RNA-Seq data analysis showed that the overwhelming majority of them were constitutively expressed in all tested tissues. qRT-PCR based expression analysis of the 10 B. rapa HECT genes under salt and drought stress conditions showed that all of them were responsive to the two stress treatments, which was consistent with their promoter sequence analysis revealing the presence of an important number of phytohormone-responsive and stress-related cis-regulatory elements. Our study provides useful information and lays the foundation for further functional determination of each HECT gene across the Brassica species.