Cargando…

The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in Saccharomyces cerevisiae

Inorganic polyphosphate (polyP) is crucial for adaptive reactions and stress response in microorganisms. A convenient model to study the role of polyP in yeast is the Saccharomyces cerevisiae strain CRN/PPN1 that overexpresses polyphosphatase Ppn1 with stably decreased polyphosphate level. In this s...

Descripción completa

Detalles Bibliográficos
Autores principales: Trilisenko, Ludmila, Zvonarev, Anton, Valiakhmetov, Airat, Penin, Alexey A., Eliseeva, Irina A., Ostroumov, Vladimir, Kulakovskiy, Ivan V., Kulakovskaya, Tatiana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562782/
https://www.ncbi.nlm.nih.gov/pubmed/31096715
http://dx.doi.org/10.3390/cells8050461
_version_ 1783426401670529024
author Trilisenko, Ludmila
Zvonarev, Anton
Valiakhmetov, Airat
Penin, Alexey A.
Eliseeva, Irina A.
Ostroumov, Vladimir
Kulakovskiy, Ivan V.
Kulakovskaya, Tatiana
author_facet Trilisenko, Ludmila
Zvonarev, Anton
Valiakhmetov, Airat
Penin, Alexey A.
Eliseeva, Irina A.
Ostroumov, Vladimir
Kulakovskiy, Ivan V.
Kulakovskaya, Tatiana
author_sort Trilisenko, Ludmila
collection PubMed
description Inorganic polyphosphate (polyP) is crucial for adaptive reactions and stress response in microorganisms. A convenient model to study the role of polyP in yeast is the Saccharomyces cerevisiae strain CRN/PPN1 that overexpresses polyphosphatase Ppn1 with stably decreased polyphosphate level. In this study, we combined the whole-transcriptome sequencing, fluorescence microscopy, and polyP quantification to characterize the CRN/PPN1 response to manganese and oxidative stresses. CRN/PPN1 exhibits enhanced resistance to manganese and peroxide due to its pre-adaptive state observed in normal conditions. The pre-adaptive state is characterized by up-regulated genes involved in response to an external stimulus, plasma membrane organization, and oxidation/reduction. The transcriptome-wide data allowed the identification of particular genes crucial for overcoming the manganese excess. The key gene responsible for manganese resistance is PHO84 encoding a low-affinity manganese transporter: Strong PHO84 down-regulation in CRN/PPN1 increases manganese resistance by reduced manganese uptake. On the contrary, PHM7, the top up-regulated gene in CRN/PPN1, is also strongly up-regulated in the manganese-adapted parent strain. Phm7 is an unannotated protein, but manganese adaptation is significantly impaired in Δphm7, thus suggesting its essential function in manganese or phosphate transport.
format Online
Article
Text
id pubmed-6562782
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-65627822019-06-17 The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in Saccharomyces cerevisiae Trilisenko, Ludmila Zvonarev, Anton Valiakhmetov, Airat Penin, Alexey A. Eliseeva, Irina A. Ostroumov, Vladimir Kulakovskiy, Ivan V. Kulakovskaya, Tatiana Cells Article Inorganic polyphosphate (polyP) is crucial for adaptive reactions and stress response in microorganisms. A convenient model to study the role of polyP in yeast is the Saccharomyces cerevisiae strain CRN/PPN1 that overexpresses polyphosphatase Ppn1 with stably decreased polyphosphate level. In this study, we combined the whole-transcriptome sequencing, fluorescence microscopy, and polyP quantification to characterize the CRN/PPN1 response to manganese and oxidative stresses. CRN/PPN1 exhibits enhanced resistance to manganese and peroxide due to its pre-adaptive state observed in normal conditions. The pre-adaptive state is characterized by up-regulated genes involved in response to an external stimulus, plasma membrane organization, and oxidation/reduction. The transcriptome-wide data allowed the identification of particular genes crucial for overcoming the manganese excess. The key gene responsible for manganese resistance is PHO84 encoding a low-affinity manganese transporter: Strong PHO84 down-regulation in CRN/PPN1 increases manganese resistance by reduced manganese uptake. On the contrary, PHM7, the top up-regulated gene in CRN/PPN1, is also strongly up-regulated in the manganese-adapted parent strain. Phm7 is an unannotated protein, but manganese adaptation is significantly impaired in Δphm7, thus suggesting its essential function in manganese or phosphate transport. MDPI 2019-05-15 /pmc/articles/PMC6562782/ /pubmed/31096715 http://dx.doi.org/10.3390/cells8050461 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Trilisenko, Ludmila
Zvonarev, Anton
Valiakhmetov, Airat
Penin, Alexey A.
Eliseeva, Irina A.
Ostroumov, Vladimir
Kulakovskiy, Ivan V.
Kulakovskaya, Tatiana
The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in Saccharomyces cerevisiae
title The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in Saccharomyces cerevisiae
title_full The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in Saccharomyces cerevisiae
title_fullStr The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in Saccharomyces cerevisiae
title_full_unstemmed The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in Saccharomyces cerevisiae
title_short The Reduced Level of Inorganic Polyphosphate Mobilizes Antioxidant and Manganese-Resistance Systems in Saccharomyces cerevisiae
title_sort reduced level of inorganic polyphosphate mobilizes antioxidant and manganese-resistance systems in saccharomyces cerevisiae
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562782/
https://www.ncbi.nlm.nih.gov/pubmed/31096715
http://dx.doi.org/10.3390/cells8050461
work_keys_str_mv AT trilisenkoludmila thereducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT zvonarevanton thereducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT valiakhmetovairat thereducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT peninalexeya thereducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT eliseevairinaa thereducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT ostroumovvladimir thereducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT kulakovskiyivanv thereducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT kulakovskayatatiana thereducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT trilisenkoludmila reducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT zvonarevanton reducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT valiakhmetovairat reducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT peninalexeya reducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT eliseevairinaa reducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT ostroumovvladimir reducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT kulakovskiyivanv reducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae
AT kulakovskayatatiana reducedlevelofinorganicpolyphosphatemobilizesantioxidantandmanganeseresistancesystemsinsaccharomycescerevisiae