Cargando…
Systematic Review of Patient-Derived Xenograft Models for Preclinical Studies of Anti-Cancer Drugs in Solid Tumors
Patient-derived xenograft (PDX) models are used as powerful tools for understanding cancer biology in PDX clinical trials and co-clinical trials. In this systematic review, we focus on PDX clinical trials or co-clinical trials for drug development in solid tumors and summarize the utility of PDX mod...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6562882/ https://www.ncbi.nlm.nih.gov/pubmed/31064068 http://dx.doi.org/10.3390/cells8050418 |
Sumario: | Patient-derived xenograft (PDX) models are used as powerful tools for understanding cancer biology in PDX clinical trials and co-clinical trials. In this systematic review, we focus on PDX clinical trials or co-clinical trials for drug development in solid tumors and summarize the utility of PDX models in the development of anti-cancer drugs, as well as the challenges involved in this approach, following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Recently, the assessment of drug efficacy by PDX clinical and co-clinical trials has become an important method. PDX clinical trials can be used for the development of anti-cancer drugs before clinical trials, with their efficacy assessed by the modified response evaluation criteria in solid tumors (mRECIST). A few dozen cases of PDX models have completed enrollment, and the efficacy of the drugs is assessed by 1 × 1 × 1 or 3 × 1 × 1 approaches in the PDX clinical trials. Furthermore, co-clinical trials can be used for personalized care or precision medicine with the evaluation of a new drug or a novel combination. Several PDX models from patients in clinical trials have been used to assess the efficacy of individual drugs or drug combinations in co-clinical trials. |
---|